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a b s t r a c t

We consider a charged Brownian gas under the influence of external, static and uniform
electric and magnetic fields, immersed in a uniform bath temperature. We obtain the so-
lution for the associated Langevin equation, and thereafter the evolution of the nonequi-
librium temperature towards a nonequilibrium (hot) steady state. We apply our results to
a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative
differential conductivity regime (Gunn effect) and discuss and compare our results with
the experimental results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ubiquitous Brownian motion remains an outstanding paradigm in modern physics. Some representative, but by no
means an exhaustive list of general references (‘‘founding papers’’, reviews and applications) are presented in Refs. [1–19].
Here we present the Langevin formulation for a Brownian carrier in uniform and static external fields. Some recent work
on charged Brownian particles is referenced in Refs. [20–47]. In our previous work on this matter, our approach hinged
on the resolution of Kramers and/or Smoluchowski equations [24,26,28,45–47], and recently we began to tackle Langevin’
s formulation of this problem [47]. Here we explore the latter, in order to study the relaxation of the Brownian carrier
towards a steady state, given electrical and magnetic external static and uniform fields. In Section 2 we present the solution
of Langevin’s equation including the above mentioned fields. In Section 3 we present our results for the nonequilibrium
temperature relaxation to the ‘‘hot’’ steady state temperature (asmodified by the electric andmagnetic fields). The computed
final ‘‘hot’’ regime temperature is compared to the long time existing results ([48] with no magnetic field present) and with
our previous results, with themagnetic field contribution, via Kramers and Smoluchowski equations [26,28,45]. In Section 4
we present an application, namely a simple yet relevant Brownian model (with no adjustable parameters) for GaAs carrier
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mobility [49–56]. The multivalley band structure, and the ‘‘hot’’ carrier steady state temperature obtained in the previous
section are the essential ingredients for the appearance of a negative differential conductivity regime, in good quantitative
agreement with well known experimental results. Furthermore our model incorporates the magnetic field contribution
hitherto not considered. Finally, in Section 6 we present our concluding remarks and outline further work.

2. Langevin equation for a Brownian charged particle

We briefly present the Langevin formalism for a free charged Brownian particle [10–12,18,19], with massm, and charge
q immersed in an homogeneous thermal reservoir at temperature TR. It is essentially Newton’s equation for the particle with
two contributing forces: the first, a systematic dissipative force Stokes like (linear in the particle’s velocity) and the second
a rapidly fluctuating random force,

m
dv
dt

= FS + Fr = −γ v + Fr(t) τ =
m
γ

. (1)

The formal solution is
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with the initial condition v0 = v(0) and τ the collision time. The random force has solely statistical properties: zero average
and white noise correlations, given by the averages
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where the correlation strength is such that the asymptotic average kinetic energy satisfies the equipartition theorem, in
thermal equilibrium with the thermal reservoir (fluctuation dissipation theorem), and given by
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Following Refs. [28,45–47] (and with a slightly different notation) we now consider the Brownian carrier (charged
particle) under the influence of homogeneous external, time independent, electric and magnetic fields; the electric
contribution is given by Felec = qE and the magnetic contribution (Lorentz’s velocity dependent force) Fmag =

1
c qv × B.

The total external force is given by

F(v) = Felec + Fmag(v) = qE − mω × v ω =
q
mc

B. (5)

Let us define a tensorial Stokes force by adding the Lorentz contribution to the usual Stokes force, as

FTS = −γ v − mω × v = −mΛ−1v (6)

where ω is the usual cyclotron frequency, the magneto mobility tensor isM = m−1Λ with Λ a tensorial collision time, that
can be cast into the form (when operating over an arbitrary vector V)

Λ(τ , ω)V = τ
V + τV × ω + τ 2ω (ω · V)

1 + τ 2ω2
. (7)

In particular, notice the familiar form for the case B = Bz
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By defining such a tensorial Stokes force, Langevin’s equation now reads

m
dv
dt

= −mΛ−1v + qE + Fr(t) (9)

with formal solution [57–60]
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Using Cayley–Hamilton theorem, and Putzer [59] and Apostol [60] results, after a lengthy but straight forward calculation
we obtain
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