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h i g h l i g h t s

• We study stochastic volatility models for extremely correlated cases.
• For each model we determine the underlying singular classical dynamics.
• We apply Dirac’s method to singular Hamiltonian systems.
• We compute propagators in Euclidean time, for several different stochastic volatility models.
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a b s t r a c t

Stochastic volatility models have been widely studied and used in the financial world. The
Heston model (Heston, 1993) [7] is one of the best known models to deal with this issue.
These stochastic volatility models are characterized by the fact that they explicitly depend
on a correlation parameter ρ which relates the two Brownian motions that drive the
stochastic dynamics associated to the volatility and the underlying asset. Solutions to the
Heston model in the context of option pricing, using a path integral approach, are found in
Lemmens et al. (2008) [21] while in Baaquie (2007,1997) [12,13] propagators for different
stochastic volatility models are constructed. In all previous cases, the propagator is not
defined for extreme cases ρ = ±1. It is therefore necessary to obtain a solution for these
extreme cases and also to understand the origin of the divergence of the propagator. In this
paper we study in detail a general class of stochastic volatility models for extreme values
ρ = ±1 and show that in these two cases, the associated classical dynamics corresponds to
a system with second class constraints, which must be dealt with using Dirac’s method for
constrained systems (Dirac, 1958,1967) [22,23] in order to properly obtain the propagator
in the form of a EuclideanHamiltonian path integral (Henneaux and Teitelboim, 1992) [25].
After integrating over momenta, one gets an Euclidean Lagrangian path integral without
constraints, which in the case of the Heston model corresponds to a path integral of a
repulsive radial harmonic oscillator. In all the cases studied, the price of the underlying
asset is completely determined by one of the second class constraints in terms of volatility
and plays no active role in the path integral.
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1. Introduction

The Black–Scholes model [1,2], one of the cornerstones of current financial theory, assumes by default that market
volatility is constant. But the analysis of the actual economically-financial data implies, as a matter of fact, that volatility
varies en time [2]. As Fisher Black himself remarked:

‘‘Suppose we use the standard deviation of possible future returns on a stock as ameasure of its volatility. Is it reasonable
to take that volatility as a constant over time? I think not’’.

To address this problem in the context of the Black–Scholes standard model, the concept of smile has been developed
[2–5]. In this approach, the volatility smile as a function of the underlying asset price is determined from the empirical data.
Other more sophisticated models that try to capture the variation in volatility are stochastic volatility models [2,6]. Here it
is assumed that the market volatility behaves as a random variable determined by a Brownian motion. This movement is
different from a second Brownian motion that dictates the dynamics of the underlying asset in the Black–Scholes model.
The correlation between both movements is parameterized by the correlation coefficient ρ. This fact, together with the
hypothesis of no arbitrage and a self financing portfolio, imply that the option price satisfies a partial differential equation
in two spatial dimensions (corresponding to the option price and the value of the volatility) and one time variable. The
equation has a potential term similar to that of a quantum particle in the presence of an external electromagnetic field.
Different stochastic models can be constructed depending on the shape of the potential term. The best known ones are the
Heston model, the Hull andWhite model and the model of Ornstein–Uhlenbeck [2,7,8]. Other variations of these stochastic
volatility models include incorporating a ‘‘jump diffusion’’ term, which gives rise to integro-differential equations [9] for the
price of the option.

Furthermore, in recent years path integrals techniques have been increasingly applied to obtain solutions of the
Black–Scholes equation [10–16] while numerical techniques are presented in Refs. [17–20]. In the context of stochastic
volatility models, in Ref. [21] the propagator has been calculated for the Heston model via path integrals, obtaining closed
form solutions for the price of the option. This result depends on the value of the correlation coefficient ρ and the proposed
solution is indeterminate for extreme cases where ρ = ±1. The same behaviour appears in Refs. [12,13] where propagators
for different stochastic volatility models are constructed. So, it is then interesting to study in detail what happens to the
propagator when the correlation coefficient takes its extreme values ρ = ±1.

This article shows that, when looking at stochastic volatility models as Euclidean quantum mechanical systems, the
classicalmechanics underlying the bidimensional Schrödinger equation atρ = ±1, is a systemwith constraints, reminiscent
of an optimal control problem. Due to the presence of links, it is necessary to resort to the Dirac method [22–24] for the
correct description of this constrained system, both in the classical and the quantum levels. Applying Dirac method shows
that the links are second class and the propagator must be calculated in terms of a Hamiltonian path integral with second
class constraints [25].

2. Stochastic volatility models

Stochastic volatility models are used to evaluate options prices and generalizes the Black–Scholes model to the non
constant volatility case. Between the different plethora of models, the best know are the Heston model [7], the CEV model
[26,27], the SBR volatility model [28], the GARCH model [29], the 3/2 model, the Hull and White model [8] and the Chen
model [30]. Some stochastic volatility models are even capable to capture some important statistical properties of real
markets, called stylized facts, such as the autocorrelation and leverage effect [31–34].

To account this stylized facts for the real financial data, empirical analysis implies that |ρ| must be of the order of 0.5
[31,32]. Although, from a statistical point of view, the extreme case ρ = ±1 is not realized in the real world, these values
can be satisfied for ‘‘outliers’’ events in the sense of Ref. [35], and from a structural perspective, is necessary understand the
behaviour of the stochastic volatility models for the full range of its parameters values.

In ordermake contact with results for ρ ≠ ±1 studied in literature [21,12,13], we consider first a wide class of stochastic
models that are related to the Hestonmodel, but ourmethods and analysis can be applied to an arbitrary stochastic volatility
model. So, we consider a class of stochastic volatility models that are characterized by the following stochastic differential
equations associated [3,2] to the underlying price S(t) and the volatility v(t) respectively

dS = µ(S, t)dt +
√
vSdW1 (1)

dv = α(S, v, t)dt + σβ(S, v, t)
√
vdW2 (2)

where it is assumed that the Brownian motions dW1 and dW2 have a correlation factor given by

⟨dW1 dW2⟩ = ρ. (3)

These equations, together with the assumption of no-arbitrage and using a self financing portfolio constructed from the
underlying asset and options, imply [3,2] the following equation for the option price U(S, v, t)
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