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a b s t r a c t

We consider a single species population obeying a saturated growth model with spatial
diffusion taken into account explicitly. Strong spatial heterogeneity is considered, repre-
sented by a position dependent reproduction rate. The geometry of the problem is that of
two patches where the reproductive rate is positive, surrounded by unfavorable patches
where it is negative. We focus on the particular case where the population would not per-
sist in the single patches (sinks). We find by means of an analytical derivation, supple-
mented by a numerical calculation, the conditions for the persistence of the population in
the compound system of weakly connected patches. We show that persistence is possible
even if each individual patch is a sink where the population would go extinct. The results
are of particular relevance for ecological management at the landscape level, showing that
small patches may harbor populations as long as the connectivity with adjacent patches is
maintained. Microcosmos experiences with bacteria could be performed for experimental
verification of the predictions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Single speciesmodels in population dynamics are important for the study of phenomena that take place inmore complex
arenas. Their simplicity allows one to inspect situations that will also be present when other species are considered. It
is indeed known that single species models might be instrumental even when the interaction network contains many
species [1]. In this work, we will consider such a single species model.

The description of the spatial aspects is of central importance in population dynamics. It could play a fundamental role
when considering issues like the persistence or extinction of a species in a certain region. In particular, the space might be
perceived as heterogeneous by the species in focus [2], resulting in, e.g., reproduction rates that depend on spatial location.
The most common situation relevant for problems in ecology and epidemiology is the one where the space is composed
of patches. Each patch is a limited region of space with constant properties. Patches where the population in focus has a
positive reproduction rate will be called habitat patches. The space between habitat patches is called thematrix.

The spatial structure depicted abovemight be approached in at least two distinctways.Metapopulations [3] and diffusion
models [4]. The first one assumes that patches are effectively uncorrelated, being connected by colonization and subject
to local extinctions. Diffusion models are motivated by statistical mechanics, assuming that populations obey a Fick law
resulting in descriptions by partial differential equations of the parabolic kind, with spatial heterogeneities reflected in the
spatial dependence of the coefficients in the equation. Which one is to be used to address a given situation is dependent on
the knowledge of the degree of correlation between the patches.

We will consider in this work a situation described by the second approach above: two habitat patches with a matrix
in between. We propose a 1-D model and we will address the question whether the population persists or goes extinct.
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Fig. 1. The profile a(x) showing two favorable regions (II and IV), surrounded by unfavorable ones.

Extinction will be mathematically translated as the fixed point with zero population being a global attractor. This situation
is similar to the one studied in Ref. [5], but our emphasis is on a peculiar phenomenon, namely the fact that there can exist
a system where the two patches would not subsist individually, but – due to coupling – the population becomes viable.

A region of space where a population cannot subsist unless it is sustained from outside is called a population sink, or
shortly, a sink. A region where a population can subsist is called a source [6]. We are thus interested in a weakly coupled
sink–sink system [7,8].

Our approach is based on the well-established Fisher–Kolmogorov equation (also called Fisher–Kolmogorov–Petrovski–
Piskunov equation, or FKPP equation). This equation is a simple diffusion equation plus a logistic growth term. The
hypotheses of locality of interactions and classical Brownian motion are implicit in this equation. More general situations
have been addressed in e.g. Refs. [9,10]. Thismodel (FKPP) has been studied inmany different instances related to population
dynamics [11–15] and plays the role of basic equation where more complex situations can be built upon [16–19]. It has also
been tested in laboratory experiments [20]. Further, it plays a central role in models of biological invasions [21].

One of the central results about the Fisher–Kolmogorov equation is the following: consider the equation in a finite domain
(in one dimension, to simplify the argument) of size D, with null Dirichlet boundary conditions. The large time behavior
depends on D. If it is larger than a certain critical value, then the solutions are non-zero, representing a population in the
domain. On the other hand, if D is smaller than the critical value, the solution tends to zero, and represents local extinction.

Thus, a simple model for a sink population is just a population in a domain smaller than a certain critical value. Our aim
is to show that if two such domains are weakly connected, the population does not necessarily go to zero for large times. In
order to do so, we will perform an analytical calculation for the linearized Fisher–Kolmogorov equation and then compare
the result with the numerical integration of the full equation.

2. Mathematical model

As discussed previously, our model is mathematically described by the Fisher–Kolmogorov equation, which, in a conve-
nient form, is given by

ut = uxx + a(x)u − u2 (1)

where u = u(x, t) is the spatial population density and subscripts denote partial derivatives. We have used time, space and
density scales in a way to avoid unnecessary constants in the equation. On the right side, we have a diffusive term (second
derivative in x), a saturation term (−u2) and a growth parameter a(x). The spatial non-homogeneity of the medium is intro-
duced by the dependence of the growth factor a(x), on x, as in Ref. [22]. If a(x) > 0, the population grows locally. For x such
that a(x) < 0 the region represents the matrix, that is, a region where the population tends locally to extinction.

A classical result [2,4] says that if Eq. (1) is solved on a finite segment of size D where a(x) = a0 (a constant) and with
a(x) → −∞ at the borders of the fragment, the population will asymptotically go to zero if D < π

√
1/a0.

We now consider the situationwherewe have two regions with a(x) > 0 surrounded by regionswith a(x) < 0.Wewant
to find a condition for a small population to grow. This allows us to neglect the nonlinear term of Eq. (1). If the associated
linear equation describes a population that gets extinguished, surely this is also true for the complete equation. On the other
hand, the population is allowed to grow indefinitely, but this growthwill be restrained by the nonlinear term in the complete
equation. Consequently, we will work with the following equation:

ut = uxx + a(x)u. (2)

The profile a(x)
Let us consider favorable patches having lengths L1 and L2, the adverse region between them having length s. All lengths,

L1, L2 and s, are constant parameters. Let us take a(x) given by the profile represented in Fig. 1.
This is a general form, with the reproductive rates in the favorable regions (a+ and a) allowed to assume different values

on each patch. The inter-patch and outside regions have negative growth rates. As we are dealing with a linear equation, we
may just suppose that the solution is of the form u(x, t) = X(x)eλt . We then have an eigenvalue problem, equivalent to the
one we would obtain for the Schrödinger equation with piecewise constant potential. The critical condition separating the
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