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Measurements of Young's modulus of microstructures are frequently based on dynamic tests on
microbeams. The aim of this work is evaluating if the accuracy of these measurements is affected signifi-
cantly by the anticlastic effect. A nonlinear model of cantilever’s dynamic behavior is thus developed and
applied to some characteristic cases. The obtained results show that, even if the introduced nonlinearity
is small enough to allow a modal approach to be still applied, the anticlastic effect has a meaningful

influence on measurement accuracies as it is evidenced by the dependence of the resonant frequency
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on vibration amplitudes. The proposed treatise permits determining the appropriate range of excitation
amplitudes to be used during the experiments and consequently to reduce appreciably the intervals of
uncertainty of the measurements.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Microcantilevers are widely used nowadays as measurement
devices in a broad range of applications: scanning tunneling and
atomic force microscopes, micro and nano tribology studies, biol-
ogy (down to the level of single molecule assay), etc. [1-4].

Material properties of microstructures are also frequently
assessed by means of tests on microbeams. Static tests are some-
times performed to correlate the load-to-displacement behavior
with the elastic modulus of the material [5,6]. More often, dynamic
tests are performed to assess the first bending mode frequency of
the studied structure with the aim of evaluating the elastic modulus
of the material [7-12]. Since frequency measurements are gener-
ally easy to be implemented, the employment of dynamic tests
reduces the complexity of the experimental set-up while accuracy
is often improved up to the level of a few percent. If the effects of
other error sources (geometry, air damping, residual stresses, etc.)
are also considered, the intervals of uncertainty in the evaluation
of Young’s modulus reported in the literature are generally of the
order of 10%.

In [13] it has recently been proven that, in the case of slen-
der beams loaded statically by a pure couple, due to the so called
anticlastic effect, the flexural behavior of the structure can be sig-
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nificantly affected not only by its geometrical characteristics but
also by the entity of the deflections. A slightly deflected microbeam
could thus exhibit a different flexural stiffness with respect to the
same structure undergoing higher loads. It could be reasonable to
assume that the anticlastic phenomenon affects also the dynamic
behavior of a cantilever beam. In this case, however, the boundary
conditions of the approach given in [13] are not respected, since
during each cycle of vibrations the bending moment is not con-
stant but varies along the beam and in time. In the dynamic tests
described in the literature, this effect is not taken into account.
Only in [12] the influence of the anticlastic curvature is considered,
but a static approach is applied. The aim of this work is evaluat-
ing the influence of the anticlastic effect on the accuracy of the
measurements of the material properties of microstructures.

2. Semi-analytical model

The first modal shape of flexural vibrations of a cantilever beam
depicted in Fig. 1 can be described in normalized form as [14]:

01(0)= (le) (sin(B12)— sinh(B1¢) — Ny [cos(B1£)— cosh(B1 2]} (1)

where ¢=z/L, with z being the longitudinal coordinate along the
beam of length L, while f1, in the case of a clamped-free beam, is
B1=1.875104, and:

_sin By +sinh B
1= cos B1 + cosh B (2)
N3 = (sin B — sinh B1) — Ny(cos B — cosh 1)
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Fig. 1. Microcantilever structure.

The actual shape of the cantilever is thus:

ug (¢, t) = m(t)q:(8) (3)

where 71(t) is the modal coordinate of the first mode. Since in the
considered case the eigenfunction expressed by Eq. (1) is normal-
ized in such a way that the maximum value of the displacement is
equal to unity, n1(t) = y(t) i.e. n1(t) is equal to the amplitude of the
displacement of the microbeam.

To take into account the anticlastic effect, the characteristic
parameter ab defined by Angeli et al. [13] is:

b
ab=3/3(1-12)—— (4)
V/Rh

where, referring to Fig. 1, b is the width of the cantilever, h is its
thickness, Ris the curvature radius of the cantilever in the deformed
position and v is the Poisson’s ratio of the beam material.

Since the first modal beam curvature 1/Ris the second derivative
of Eq. (1) with respect to ¢:

(B singio) - sinn(8i0)
RO ~ \ 12N, ! !

—Ni[—cos(B1£) — cosh(B1 )]} (5)

obviously, according to Eq. (3), the beam curvature at a certain
instant of time will be:
1 ni(t)
- = 6
Rz, ) R() (6)
It is hence possible to adopt the correction factor @ for the flexural
stiffness of the beam as defined in [13]:
1 212

¢= 2 2

1-v ab(1 —v?)

with

F*(ab) f*(ab) (7)

L
2ab(1 — v2)

F*(ab) = (B} + B%)sinh %b cos %b — (B} — B;)cosh O{—b sin %b

* 42 42 1 1 52 42 * R* 8
f*(ab) = 2(B + B (sinh ab + sin ab) + (B}’ ~ By + 2B}B3) cosh (8)
ab sin ab + (B} — By — 2B}B;)sinh ab cos ab + 2(Bj — B )ab

and
B — By B — B,
! v/4/3(1 —12) 2 v/4/3(1 —v2)

v sinh(ab/2) cos(ab/2) — cosh(ab/2) sin(ab/2)

Bl:\/m o sm?;b-i-sinhabbz o (10)
By— v sinh(ab/2) cos(ab/2) + cosh(ab/2) sin(ab/2)

/3(1 —2) sinh ab + sin ab
The theory given in Angeli et al. [13] is based on the assump-
tion that the load applied to the beam induces a constant curvature
along its length. In the case considered in this work (frequency

response of a microcantilever) the curvature varies continuously
along the beam. It seems, therefore, reasonable to extend the
same approach, thus obtaining a stiffness correction factor @ that
depends on the position ¢ along the beam and varies also dur-
ing each oscillation cycle, i.e. @ =®(¢, t). What is more, making
the hypothesis that the system is slightly nonlinear, i.e. that the
correction introduced by taking into account the anticlastic effect
influences only slightly the dynamic response of the microbeam,
it seems reasonable that a modal approach can still be used. If
the usual methodology is applied [14], the “instantaneous” modal
stiffness K; of the microbeam can be evaluated as:

_ ' bh3Eg
K= [ 2222 14 (11)
! /012(R(;))2 ‘

where E is Young’s modulus of the beam material.

It must be noted that, with respect to the linear case, the usual
expression of the modal stiffness is modified by introducing the
correction factor @ that is integrated along the whole length of
the beam. Moreover, due to the mentioned small nonlinearity, the
modal stiffness varies during the oscillation cycle, i.e. K; = Kq(t),
and therefore it has been indicated as “instantaneous”.

The modal stiffness of the linear system Kj is:

' pm3E
= [ —2TE g4 (12)
! /012(R<c))2 ¢

Considering Eqs. (11) and (12) and bearing in mind that the limit
values of the correction factor @ are, respectively, 1 and 1/(1 —v?)
[13], it follows that:

L (13)
In fact, depending on the oscillation amplitude, the “instantaneous”
modal stiffness K; could vary slightly between that of a beam-like
structure Ky and that of a plate bent to a cylindrical surface K7 /(1 —
12)[15]. These bound values of flexural stiffness refer, respectively,
to a plane stress and a plane strain structural model.

The well known expression of modal mass can be used:

1
My = / pbh[q;(¢)]Ld¢ ~ 0.25pLbh (14)
0

with p designating the density of the cantilever.

As it will be shown below, due to the slight variation of K;, the
response of the system is close to that of a linear system. A resonant
frequency, i.e. the frequency at which the normalized frequency
response is maximal, can thus still be expressed as:

K
1= || = (15)
My

where f(leq is the “equivalent” modal stiffness of the system. Phys-
ically, the latter is a kind of time average of the value of K; that
cannot be determined analytically, but it has to be obtained numer-
ically (or experimentally).

In the case of excitations due to the harmonic motion of the sup-
porting structure yq(t) = Yg sin(wt), the response of the cantilever is
obtained by resorting to a reference frame fixed to the constraint
(Fig. 2) [14]. In this case the modal force is given by:

F1(t) = aw?Yy sin(wt) (16)
where q, in the case of a beam with uniformly distributed mass, is:
hbL

a= (pm) {—cos B1—cosh By — Ny[sin B; —sinh 1] +2} (17)
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