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A B S T R A C T

There is a great deal of literature regarding use of non-geographically based connectivity matrices or combi-
nations of geographic and non-geographic structures in spatial econometrics models. We explore alternative
approaches for constructing convex combinations of different types of dependence between observations. Pace
and LeSage (2002) as well as Hazır et al. (2016) use convex combinations of different connectivity matrices to
form a single weight matrix that can be used in conventional spatial regression estimation and inference. An
example for the case of two weight matrices, W1,W2 reflecting different types of dependence between a cross-
section of regions, firms, individuals etc., located in space would be: Wc = 𝛾1W1 + (1 − 𝛾1)W2,0 ≤ 𝛾1 ≤ 1. The
matrix Wc reflects a convex combination of the two weight matrices, with the scalar parameter 𝛾1 indicating the
relative importance assigned to each type of dependence. We explore issues that arise in producing estimates
and inferences from these more general cross-sectional regression relationships in a Bayesian framework. We
propose two procedures to estimate such models and assess their finite sample properties through Monte Carlo
experiments. We illustrate our methodology in an application to CEO salaries for a sample of nursing homes
located in Texas. Two types of weights are considered, one reflecting spatial proximity of nursing homes and the
other peer group proximity, which arise from the salary benchmarking literature.

1. Introduction

Spatial regression models typically rely on spatial proximity to spec-
ify weight matrices, for example first-order neighbors (those with bor-
ders in common) or some number (say m) of nearest neighboring
regions, or points (e.g., firms, consumers, houses) located in space. This
approach has two advantages: 1) geographical location of observations
is objective and easy to determine, and 2) weight matrices based on
geographical space can be viewed as fixed over time and in most cases
exogenous.1 There has been a great deal of criticism of weight matrices
based solely on spatial location of observations, (e.g., Corrado and Fin-
gleton, 2012). This criticism in part derives from application of spatial
regression models to broader contexts involving interregional flows of:
goods (e.g., trade), population (e.g., migration), knowledge (e.g., patent
citations); student peer groups, social networks, etc., where geograph-
ical location of observations does not seem intuitively or theoretically
appealing.

* Corresponding author.
E-mail addresses: nicolas.debarsy@cnrs.fr (N. Debarsy), jlesage@spatial-econometrics.com (J. LeSage).

1 There are cases where location of firms or consumers in space could result from an endogenous sorting process or some other underlying economic mechanism.

Further, early concerns of Fingleton (2003) regarding the theoretical
and empirical basis for assumptions about the spatial reach of externali-
ties, and methods for explicitly modeling knowledge spillovers between
interacting firms or modeling knowledge flows due to job switching
in labor market areas, etc. still remain largely unexplored. There are
a limited number of studies where weight matrices reflecting connec-
tivity of observations have been motivated by underlying theoretical
considerations. For example Behrens et al. (2012) derive a quantity-
based structural gravity equation system where both trade flows and
error terms are cross-sectionally correlated based on population shares
of regions in the sample, and Koch and LeSage (2015) show that the
multilateral resistance concept from trade theory (Anderson and van
Winkoop, 2003, 2004) can be viewed as a simultaneous autoregressive
dependence structure involving gross domestic product shares of the
sample regions as well as other types of generalized distance factors.

One response to dissatisfaction regarding use of connectivity struc-
tures based solely on spatial location has been the introduction of
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simultaneous autoregressive models that rely on more than one weight
matrix (see Lacombe, 2004; Badinger and Egger, 2011; Lee and Liu,
2010; Elhorst et al., 2012; Liu et al., 2014). In these models, different
weight matrices are introduced in an effort to capture different types
of cross-sectional dependence within the same spatial autoregressive
specification. Specifically, multiple spatial lags of the dependent vari-
able vector y are introduced as right-hand side variables in an effort
to extend conventional spatial autoregressive models to include what
have been labeled ‘higher-order’ terms, as shown in (1), where L of
such terms are introduced.

y =

( L∑
𝓁=1

𝜌𝓁W𝓁

)
y + X𝛽 + 𝜀 (1)

In (1), y is an n × 1 vector of dependent variable outcomes, X is
an exogenous n × k explanatory variables matrix, with 𝛽 the associ-
ated k × 1 parameters, 𝜌𝓁 , 𝓁 = 1,… , L are scalar dependence param-
eters measuring the strength of each type of dependence modeled by
the n × n connectivity matrices W𝓁 , 𝓁 = 1,… , L. The n × 1 disturbance
vector is assumed to have independent error terms with zero mean and
constant scalar variance (𝜎2) across all n observations.

One example of a higher-order specification is Lacombe (2004), who
explored a county-level cross-sectional spatial relationship involving
program participation of state residents, where a spatial matrix W1 is
used to identify nearby counties located within the same state and a
second spatial weight matrix W2 captures the influence of nearby coun-
ties located in neighboring states. Liu et al. (2014) in a model of social
interaction that explores peer effects rely on one weight matrix to cap-
ture local-average (social norm) influences of peers and a second weight
matrix for influences reflected by local-aggregate peer effects (social
multiplier). However, LeSage and Pace (2011) point to a number of
estimation and interpretive issues that arise for models of the type in
(1), and Elhorst et al. (2012) point out complications that arise regard-
ing the parameter space for the dependence parameters 𝜌𝓁 , 𝓁 = 1,… , L.

Another thread in the literature is to simply replace the spatial
weight matrix with more appropriate types of connectivity structures,
for example weight matrices based on friendship ties. Patacchini and
Zenou (2012) analyze the role played by teenagers conformity to their
peers’ behavior in producing juvenile crime outcomes in a social net-
working application. In the area of international finance, connectivity
matrices may reflect real transmission channels for risk across coun-
tries, which might arise from trade or financial ties between coun-
tries. Alternatively, information transmission channels for risk might
be reflected by financial market information that captures perceptions
of market participates regarding own- and other-country risks (see
Debarsy et al., 2017, and references therein). This suggests weight
matrices based on trade, financial flows, or socio-economic similarities
between countries.

A related literature is on methods for assessing different weight
structures for their consistency with a specific economic relationship
and set of sample data. Since models based on alternative weight matri-
ces are likely to be non-nested, one approach in this literature uses
the non-nested J test developed by Davidson and MacKinnon (1981)
extended to spatial regression models by Anselin (1988). The power of
alternative predictions for a host of spatial regression model specifica-
tions are explored in Kelejian (2008) and Kelejian and Piras (2011).
Burridge and Fingleton (2010) and Burridge (2012) propose respec-
tively to rely on bootstrap procedures for inference on the J test and
to use maximum likelihood estimation rather than instrumental vari-
ables in the first step of the J test computation, within the Kelejian
(2008) framework. Liu et al. (2014) propose an extension of the Kele-
jian (2008) J test to differentiate between the local-aggregate and the
local-average endogenous peer effects in an econometric network model
with network fixed effects. Debarsy and Ertur (2016) build on the J
tests of Kelejian (2008) and Kelejian and Piras (2011) to allow for het-
eroskedasticity in a spatial autoregressive specification and further pro-
pose a procedure based on Hagemann (2012) to circumvent the deci-

sion problem inherent to non-nested models tests (the decision prob-
lem arises when non-nested tests do not lead to a clear choice between
competing models). Alternatively, Jin and Lee (2013) consider a spa-
tial model extension of the Cox test (Cox, 1961, 1962) for the case of
non-nested models. In the context of determining the most relevant geo-
graphically based spatial weight matrix, Géniaux and Martinetti (2017)
suggest to use different distance kernels with a single parameter h (rep-
resenting the bandwidth or the number of neighbors, depending on the
kernel). Identification of the matrix W is then based on a moment esti-
mator that tries to minimize the residual sum of squares of the model
estimation with respect to W(h).

A Bayesian alternative to non-nested model tests is proposed by
LeSage and Pace (2009) in order to select the most appropriate spatial
weight matrix. In contrast to the J tests that rely on specific model esti-
mates and their associated predictions, the Bayesian approach to model
comparison integrates over all model parameters to calculate the log-
marginal likelihood and associated model probabilities. This approach
makes inference regarding the best weight matrix unconditional on any
particular set of estimates. Note that parameter estimates based on mod-
els that rely on the wrong weight matrix will be biased, making it desir-
able to draw model comparison conclusions that are unconditional on
the parameter estimates. LeSage (2014, 2015), extends this approach to
simultaneously calculate log-marginal likelihoods and associated model
probabilities for both cross-sectional and panel data model specifica-
tions and weight matrices. Again, inferences drawn based on posterior
model probabilities are unconditional on parameter estimates from the
host of alternative models considered.

Finally, Harris et al. (2011) provide a wide ranging discussion of
techniques aimed at searching over alternative weight matrices for
the best fit, approaches to estimating the weight matrix using non-
parametric methods, correlation and iterative approaches, along with
an illustration focused on establishment level R&D in the UK. While
noting approaches based on hybrid combinations, their focus is on find-
ing a single most appropriate weight matrix.

Our contribution to the spatial econometric literature regarding
alternative weight matrices is to pursue an approach considered by
Pace and LeSage (2002) as well as in Hazır et al. (2016), that relies
on convex combinations of different connectivity matrices to form a
single weight matrix. An advantage of this approach is that the result-
ing weight matrix can be used in conventional spatial regression meth-
ods to produce estimates and inference. This approach also avoids sev-
eral issues raised in LeSage and Pace (2011) regarding estimation and
interpretation of higher-order models that include spatial lags involving
multiple different W matrices.

This convex combination approach proposes using
Wc =

∑L
𝓁=1 𝛾𝓁W𝓁 , with 0 ≤ 𝛾𝓁 ≤ 1, 𝓁 = 1,… , L and

∑L
𝓁=1 𝛾𝓁 = 1,

in a standard spatial econometrics specification. The matrix Wc reflects
cross-section dependence specified using a convex combination of
L different types of connectivity between observations.2 The scalar
parameters 𝛾𝓁 indicate the relative importance assigned to each type
of dependence in the cross-sectional dependence scheme. When each
W𝓁 ,𝓁 = 1,… , L, is row-normalized, then Wc obeys the conventional
row-normalization, which allows use of conventional spatial regression
model specifications and estimation methods.3

In Section 2, we explore two alternative estimation strategies for
determining estimates of 𝛾𝓁 ,𝓁 = 1,… , L in this convex combination
approach, one that calculates Bayesian posterior model probabilities

2 In this paper, we do not address the potential endogeneity issue that may arise when
weight matrices are not based on geographic proximity. The matrices entering the convex
combination are thus assumed to be exogenous. For standard SAR cross-section models,
Qu and Lee (2015) develop an estimator robust to endogeneity of the connectivity struc-
ture. However, in our context, we leave this question for further research.

3 Alternative types of normalization for connectivity matrices W𝓁 are possible (see
Kelejian and Prucha, 2010). However, with the exception of special cases, normalization
of each connectivity matrix W𝓁 by one of the matrix norms proposed in Kelejian and
Prucha (2010) does not result in a normalized convex combination matrix Wc .
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