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A B S T R A C T

This paper considers efficient estimation of spatial autoregressive models in a system of interrelated networks.
An example describes a market situation with several chain stores competing against each other. The strategy
of a store in the chain does not only involve coordination with the other stores in the same chain, but also
competition against opponent stores in other chains. To estimate the system, we extend the generalized method
of moments framework based on linear and quadratic moment conditions proposed by Lee (2007) and Lin
and Lee (2010). We show that under some regularity assumptions the proposed GMM estimator is consistent
and asymptotically normal. We derive the best GMM estimator under normality and propose a robust GMM
estimator against unknown heteroskedasticity. Monte Carlo experiments are conducted to study the finite sample
performance of the GMM estimation. We also provide an empirical application of the model on the spatial
competition between chain stores in the market of prescription drugs.

1. Introduction

Spatial econometric models have attracted considerable interest in
various fields of economics, including urban, labor, international and
development economics, among others. One of the most widely used
spatial models is the single equation model introduced by Cliff and Ord
(1973, 1981), which is referred to a spatial autoregressive (SAR) model,
see, e.g., Anselin (1988). In this paper, we consider an extension of the
SAR model to the study of interactions across networks. In particular,
we consider the estimation of network outcomes in a system of inter-
related networks. The model describes a market situation with several
chain stores competing against one another. Each chain’s outcome, e.g.,
prices, is represented by a vector. In this market structure, stores’ pric-
ing strategy could be more complicated than that in a simple oligopolis-
tic market. It includes not only the traditional price competition among
chains, but also relationships among prices of stores in the same chain.
In Appendix E, we use a simple price competition model to study such
a market structure where stores are from two different chains. We show
that in the equilibrium, the strategy of a store in a chain does not only
involve competition against opponent stores of other chains, but also
coordination with other stores in the same chain. Therefore, we can set
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up a SAR equation for each chain, but those equations need to be esti-
mated simultaneously because each equation contains spatial lag terms
(reactions) to other chains in the market. Aside from spatial correla-
tions among outcomes of chains, the error terms are also assumed to be
spatially correlated among chains, which contributes another source of
spatial dependence.1

In this model, as the spatial lag terms may have different coeffi-
cients, it will be computationally intensive to implement the method
of maximum likelihood (ML) even when the disturbances are normally
distributed due to the complicated Jacobian transformation. This is so,
especially for models with large sample sizes. Moreover, Ord’s (1975)
device for a single equation SAR model cannot be extended to this
model due to multiple spatial lags on outcomes. Similar situation occurs
in the high order SAR model, see, e.g., the discussion and references
in Lee and Liu (2010). Furthermore, it is computationally difficult to
impose general stability conditions via unknown parameters of the sys-
tem. An issue similar to that for the high order spatial lags model
as pointed out in Elhorst et al. (2012). Therefore, in this paper, we
introduce a generalized method of moments (GMM) estimation of the
model, based on modified linear and quadratic moments in Lee (2007).
Specifically, we demonstrate that our GMM estimators are consistent
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and asymptotically normal, and we also derive the most efficient GMM
estimator under the normality assumption and show that it is asymp-
totically as efficient as the ML estimator. In order to deal with possible
spatial correlations in error terms, we generalize some of the speci-
fication in Lee and Liu (2010) to fit the multiple network setting. In
addition, while ML approach might be inconsistent in the presence of
unknown heteroskedastic errors, GMM methods can be easily modified
for consistent estimation under such a scenario.

There has been some attempt on the specification and estimation
of multiple equation systems with spatial dependence in the litera-
ture. Kelejian and Prucha (2004) introduce a very general simultane-
ous equation SAR (SESAR) model, incorporating spatial lags in depen-
dent variables and allowing for spatial correlation in disturbance terms.
They consider two stage least square (2SLS) and three stage least square
(3SLS) estimation methods for such a model. Baltagi and Deng (2015)
extend the model to fit panel data by deriving a 3SLS estimator for
SESAR model with random effects. Baltagi and Bresson (2011) employ
the ML method to estimate a spatial seemingly unrelated regression
panel model. The disturbances allow spatial error components. They
also propose joint and conditional Lagrange multiplier tests for the pres-
ence of spatial correlation and random effects. Liu (2014) considers
identification and estimation of social network models in a system of
simultaneous equations. 2SLS and 3SLS estimations with many instru-
mental variables (IV) and bias correction procedures are provided. Liu
and Saraiva (2017) proposes a GMM estimation framework for the SAR
model in a system of simultaneous equations with heteroskedastic dis-
turbances. Besides linear moment conditions, their GMM method also
utilizes quadratic moment conditions based on the covariance struc-
ture of model disturbances within and across equations. Yang and Lee
(2017) study the identification and quasi maximum likelihood (QML)
estimation of a simultaneous equations spatial autoregressive model
which incorporates simultaneity effects, own-variable spatial lags and
cross-variable spatial lags as explanatory variables, and allows for cor-
relation between disturbances across equations. Although the models
considered in these existing works are different in some ways, they all
consider multivariate outcomes of each spatial unit. Thus, each of the
simultaneous equations presents a structure for an outcome variable
and, therefore, each equation has the same sample size. In a typical
SESAR model, there might be a single network linking the spatial units.
Our model differs from theirs in that each of the multiple equations may
have different sample sizes (multiple chains may have different number
of stores, which is often the case). In our model, each network has
its distinctive feature for an equation, and multiple networks generate
multiple equations. Each network may have a different size in general.
As for the estimation method, our GMM estimator utilizes both linear
moment conditions based on the orthogonality condition between the
IV and model disturbances, and quadratic moment conditions based on
the covariance structure of model disturbances (similar to those pro-
posed by Lee, 2007, Lee and Liu, 2010, Lin and Lee, 2010, and Liu
and Saraiva, 2017), thus is more efficient relative to the 2SLS and
3SLS.

The paper is organized as follows. In Section 2, we introduce the
SAR model within a system of interrelated networks and study the
parameter space and identification conditions under the traditional like-
lihood framework. Computational issues on the ML estimation are dis-
cussed. We establish identification of the model and propose a com-
putationally tractable GMM estimation approach in Section 3. Section
4 investigates consistency and asymptotic distribution of GMM estima-
tors. Section 5 derives the best selection of moment functions under
normality and discusses efficiency properties of the best GMM (BGMM)
estimator. A robust GMM estimator against unknown heteroskedastic-
ity is proposed in Section 6. Section 7 provides Monte Carlo results

1 Our equations may also contain spatial lags of the exogenous variables. For simplicity,
if they are included, they are treated as subset of exogenous variables. Such a treatment
does not have specific theoretical econometric irregularity for a SAR model.

on finite sample properties of the GMM estimators. In Section 8, we
provide an empirical application of the model on spatial competition
between chain stores in the market of prescription drugs. Section 9 con-
cludes. All the proofs of the results are collected in the Appendices.

2. The model, parameter space and identification

The model under consideration with r interrelated networks is spec-
ified in its general form as

Y1,n1
= 𝜆11W11Y1,n1

+ 𝜆12W12Y2,n2
+ · · · + 𝜆1rW1rYr,nr

+ X1,n1
𝛽1 + U1,n1

Y2,n2
= 𝜆21W21Y1,n1

+ 𝜆22W22Y2,n2
+ · · · + 𝜆2rW2rYr,nr

+ X2,n2
𝛽2 + U2,n2

⋮

Yr,nr
= 𝜆r1Wr1Y1,n1

+ 𝜆r2Wr2Y2,n2
+ · · · + 𝜆rrWrrYr,nr

+ Xr,nr
𝛽r + Ur,nr

(1)

with

U1,n1
= 𝜌11M11U1,n1

+ 𝜌12M12U2,n2
+ · · · + 𝜌1rM1rUr,nr

+ 𝜀1,n1

U2,n2
= 𝜌21M21U1,n1

+ 𝜌22M22U2,n2
+ · · · + 𝜌2rM2rUr,nr

+ 𝜀2,n2

⋮

Ur,nr
= 𝜌r1Mr1U1,n1

+ 𝜌r2Mr2U2,n2
+ · · · + 𝜌rrMrrUr,nr

+ 𝜀r,nr

where for i, j = 1,…, r, Yi,ni
is a ni × 1 vector of outcomes of all the

ni individuals from group i; Xi,ni is an ni × kxi
matrix of nonstochastic

regressors for group i; Wii’s and Mii’s are ni × ni nonstochastic net-
work links matrices for within group individuals, measured in terms
of physical or economic distances between individuals in group i, and
Wij’s and Mij’s with i ≠ j are ni × nj nonstochastic network matrices
for between group individuals, which capture the spatial correlations
between individuals from different groups i and j; Ui,ni

’s are the distur-
bances vectors with spatial correlations; elements of 𝜀i,ni

are zero mean
i.i.d. disturbance such that 𝜀i,ni

∼ (0, 𝜎2
i Ini

), and 𝜀i,ni
and 𝜀j,nj

for i ≠ j are
also independent.

Equation (1) models a system of outcomes with r interrelated net-
works. In industrial organization for an example, it may describe a mar-
ket with r competitors where each competitor i has ni chain stores. In
the case r = 2, it fits conveniently in the case of a duopoly. For instance,
Y1,n1

may represent a vector of prices or quantities of Wal-Mart stores
and Y2,n2

represents a vector of prices or quantities of K-Mart stores.
W11, W22 are, respectively, spatial weight matrices for Wal-Mart and
K-Mart stores designated in terms of distances between stores. Similarly,
W12 and W21 denote the distances between rival stores. Unlike W11 and
W22, W12 and W21 are respectively n1 × n2 and n2 × n1 matrices rather
than square matrices when n1 ≠ n2.2

We can write the model in the following form:

⎛⎜⎜⎜⎜⎜⎝

Y1,n1

Y2,n2

⋮

YR,nR

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

𝜆11W11 𝜆12W12 · · · 𝜆1rW1r

𝜆21W21 𝜆22W22 · · · 𝜆2rW2r

⋮ ⋮ ⋱ ⋮

𝜆r1Wr1 𝜆r2Wr2 · · · 𝜆rrWrr

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

Y1,n1

Y2,n2

⋮

YR,nR

⎞⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝

X1,n1
0 · · · 0

0 X2,n2
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · Xr,nr

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝛽1

𝛽2

⋮

𝛽r

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

U1,n1

U2,n2

⋮

Ur,n2

⎞⎟⎟⎟⎟⎟⎠
,

or equivalently,

2 Due to distance in this example, we have W12 = W′
21. However, this condition can be

relaxed in a more general setting with asymmetric Wij ’s.
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