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On the response of a resonating plate in a liquid near a solid wall
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b École Supérieure d’Électricité, Universités de Paris XI, France

c MEMS Technology Center, Schlumberger Oilfield Services, Élancourt, France
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Abstract

We investigate the effect of a nearby solid wall on a microfabricated resonating plate immersed in a fluid. This phenomenon, known as squeeze film
damping, has long been studied with microfabricated devices in gases but only recently with incompressible liquids. Here, we make measurements
with a rectangular plate operating in its fundamental resonance mode in close proximity to a solid wall in a wide range of fluid viscosities
(1–50 cP). For the plate oriented parallel to the wall, we measure power law-like behavior for the dependence of both the effective mass and the
drag experienced by the sensor as a function of wall distance (−1/2 and −1, respectively). For the plate oriented perpendicular to the wall, we
discover the surprising result that each viscosity has a unique distance of maximum damping.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The ever-increasing demand for technology based on
microfabrication, especially those consisting of Micro-
ElectroMechanical Systems (MEMS), has driven forward a great
amount of applied and fundamental research [1]. An especially
pertinent issue with devices that sense or produce motion is that
of squeeze film damping, an effect that results from the compres-
sion of air or liquid between structures. Perhaps the simplest
example would be that of a cantilever vibrating above a sur-
face, where the entire system is immersed in a liquid or gas.
Each oscillation of the beam requires that the fluid be squeezed
from between the beam and surface, creating an additional drag
or dampening. Such phenomena greatly affect the resonance
frequency, quality-factor and amplitude of motion. Accelerom-
eters, pressure sensors and actuators often take advantage of
these effects to optimize their designs [1].
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Our interest in this topic comes from our development of a
miniaturized sensor to measure the physical properties of fluids,
such as their density or viscosity. This sensor, consisting of an
actuated cantilever with a built-in strain gauge, must operate
in confined environments, such as in the small diameter flow
lines of an oil-services tool used downhole. Hence, it was of
great interest to characterize and understand how the damped
resonance of a cantilever in a fluid would be influenced by a
nearby wall. For example, it may be necessary to compensate
for the presence of a wall or flow line diameter in the working
equations of the sensor.

The preponderance of investigations into squeeze film damp-
ing with MEMS or small devices has focused on compressible
fluids, such as gases [1–3]. Only recently have investigators
examined this phenomenon with small devices in liquids, one
example being that of Naik et al. [4], who examined a high
aspect-ratio beam, characterizing the effect of a nearby wall on
the resonance. While conventional models suggest that the vis-
cous damping should scale inversely as the third power of the
gap height, these researchers found a highly disparate behav-
ior [5]. Theoreticians are beginning to investigate this phe-
nomenon more closely, especially as liquid-immersion atomic
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Fig. 1. (a) Bulkhead consisting of a swagelok nut and glue-filled tube; electri-
cal connections that pass through the tube can be observed on left-hand side.
Vibrating plate can be seen as the rectangular shape at the end of tube on the
right-hand side of photo. (b) Schematic of vibrating plate with coordinate system
illustrated. The plate oscillates in the ẑ direction much like a diving board.

force microscopy has gained in popularity [6–10]. While it is
generally agreed that the viscous damping should scale as the
inverse cube of the gap height as an asymptote, it is interesting
to note that this has not yet been observed experimentally with
MEMS devices [5].

In this article, we will study the afore-mentioned effects with
a millimetre-scale microfabricated cantilever-style plate. After
describing its fabrication process (Section 2), the methodology
and theory for extracting the added mass and damping terms
will be described (Section 3). Vibrometer measurements will
next be presented to establish that we are exciting the plate in
its fundamental mode (Section 4). The resonance will be exten-
sively characterized under vacuum as a function of temperature
to measure the internal damping and effective mass (Section 5).
We will then measure the effects of squeeze film damping with
three liquids and compare our results with recent theoretical and
experimental studies (Section 6).

2. Experimental

2.1. Device fabrication

The vibrating MEMS plate is fabricated via a multi-layer
lithography process that starts with a 〈1 0 0〉 silicon on insulator
(SOI) wafer with a 20 �m thick device layer [11]. The thick-
ness of this device layer determines the thickness of the plate,
though there is an increase of a couple of additional microns
from the fabricated circuitry. Several hundred plates (1.45 mm
long × 1.8 mm wide) are fabricated per wafer, with an integrated
strain gauge consisting of a polysilicon Wheatstone bridge, a
coil for actuation and a resistance based thermometer. The chip
is mounted and packaged such that it can be operated in a high
pressure, high temperature environment (Fig. 1a). A permanent
magnet consisting of samarium cobalt (SmCo) is placed such

that the magnetic field is parallel to the x axis (Fig. 1b). At the
typical plate-to-magnet distance, we measured a magnetic field
of 0.1 T, which is largely temperature insensitive. Current pass-
ing (ca. 1 mA) through the chip’s coil experiences a Lorentz
force in the presence of an external magnetic field, deflecting
the plate with an out-of-plane motion, which is then detected by
the strain gauge.

2.2. Interrogation methods

The motion of the plate creates an imbalance in the piezore-
sistant arms of the polysilicon Wheatstone bridge. It is biased
across one diagonal with 1.0 V and the amplitude of the motion
is detected by measuring the oscillatory output on the oppo-
site diagonal. The output of the Wheatstone bridge is amplified
with a Stanford Research System pre-amplifier (SRS 560) typi-
cally operated at a gain of 103. The excitation and measurement
process is carried out with a Agilent 35670A digital signal
analyzer (DSA) operated in burst chirp (1.0 V) mode with a
Hanning window with an average of 15 spectras. The DSA
records the complex ratio of the excitation and bridge volt-
ages. Both the in-phase and quadrature components of the spec-
tra are transferred to a personal computer where regression is
performed.

2.3. Regression methodology

Regression is performed by algorithms written in MatLab,
which implement the ideas of Mehl [12] and Ewing and Trusler
[13]. The regression employed here measures the background-
subtracted peak amplitude, frequency, width and quality factor
(q-factor).

The output spectra from the strain gauge are fit with the
following complex function where u refers to the in-phase com-
ponent, v the quadrature component and i = √−1.

u(f ) + iv(f ) = Af

f 2 − F2 + B + C(f − f0) (1)

The following four complex parameters are determined by
regression and defined as indicated below:

A = ar + iai (2)

B = br + ibi (3)

C = cr + ici (4)

F = f0 + ig0 (5)

f0 and g0 correspond to the resonance frequency (frequency of
maximum amplitude) and half peak width of the square of the
amplitude, respectively. The constants A, B and C are used to
isolate the resonant signal. For example, A is a scaling factor
for the peak height, B accounts for a background offset and C
for a background slope. An example of the effectiveness of this
function is shown in Fig. 2.
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