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a  b  s  t  r  a  c  t

Resonator  based  sensing  devices  operated  within  a  fluid  medium  often  require  maximal  quality  factors
in  order  to  enhance  their  performances.  We  present  a tuning  fork  shape  optimization  formalism  based
on both  analytical  and numerical  approaches,  and  identify  the geometry  with  the  lowest  possible  losses.
We  also  report  on the  fabrication  of a  homemade  tuning  fork  based  on  this  optimization  process,  and
experimental  measurements  show  a quality  factor of Q = 41000  in air at atmospheric  pressure.  This  value
represents,  to the best  of  our  knowledge,  the  record  quality  factor  for a flexural  resonator  in  ambient  air.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Flexural mechanical resonators have been extensively used in
the past century, and are most often operated in vacuum in order
to minimize any coupling with the surroundings that could affect
their excellent resonance characteristics. Some applications how-
ever require their complete immersion within a fluid medium. It is
for example used for highly sensitive chemical sensing platforms
[1], but also for in-situ force measurements such as the photo acous-
tic detection [2], the resonant optothermoacoustic detection [3] or
precise temperature measurements [4].

For resonators operated in a fluid, the surrounding fluid strongly
modifies the characteristics of the resonance and can dramatically
reduce the sensors performances compared to vacuum. Those per-
formances are however usually closely related to the amount of
damping experienced by the resonator. It is now established that
the damping occurring within the fluid can be attributed to several
mechanisms, among which viscous damping and acoustic radiation
damping are the most significant. These two effects, originating
both from a fluid-structure interaction but relying on two  distinct
physical properties of the fluid that are viscosity and compressibil-
ity, behave differently with respect to the various dimensions of the
resonator geometry. A shape optimization could therefore enhance
fluid sensor performances.
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Analytical modeling should be preferred over numerical treat-
ments since the dimensions of the resonator can vary over possibly
several orders of magnitude. Shape optimization is all the more
complex that a wide number of resonator’s shapes have appeared
over the years, each one requiring specific models. In the following,
we only consider the case of tuning forks since they are one of the
most popular geometry for sensing applications. A similar study
has been proposed for single beam resonators, but the approach
remains theoretical and only applies to infinitely thin cantilevers
[5,6].

Although our method applies to any tuning fork oscillating
within any viscous fluid, we present a quality factor optimization
in air at atmospheric pressure for a clamped-free quartz tuning
fork class. We  also fabricate a tuning fork close to the optimal, and
its experimental quality factor is compared with the theoretical
prediction.

2. Optimal tuning fork

2.1. Analytical expression for the quality factor

We  consider a tuning fork vibrating in an infinite and com-
pressible fluid medium. Let �b denote the tuning fork volumetric
mass density, e the dimension of the prongs along the displace-
ment direction, l the dimension along the displacement orthogonal
direction, g the gap between the two prongs and ω the angular
frequency of the vibration. Concerning the fluid, � denotes be the
dynamic viscosity, �f the fluid volumetric mass density and c the
speed of sound. A schematic of the situation can be found in Fig.1.
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Fig. 1. Schematic of a clamped-free tuning fork operated on its first in-plane symmetric mode of vibration.

The total quality factor of the tuning fork can be written as the sum
of its different contributing effects, according to the usual additive
rule valid for independent damping sources:

1
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= 1
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+ 1
Qt

+ 1
Qv

+ 1
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. (1)

The quality factor QS represents the anchor losses. The actual
value of this factor in a resonator greatly depends on the efforts
spent in the choice of the anchors locations with respect to the
vibrating mode. It is known that very high support quality factors
QS>105 can be achieved if the tuning fork is operated on its sym-
metric in-plane mode of operation, especially if g is small compared
to the beam’s length. For that reason, we restrain our optimization
to this mode of vibration, and consider that QS is infinite.

The quality factor Qt is the thermoelastic damping. We  include
a known expression in our optimization [7]
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where E is the material’s Young modulus, � its thermal expan-
sion coefficient, T0 its temperature, Cp its heat capacity, � its heat
conductivity and � = e

√
ω�bCp/2�.

The quality factor Qv is the quality factor of the beam associated
to the viscosity of the surrounding fluid. Theoretical expressions
have been reported for any rectangular cross section shape [8,9],
and a simplified expression can be given for high beta parameters
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The latter expression contains the sum of two  contributions:
the first one represents viscous damping in the unbounded fluid
case, while the second one is due to a possible squeeze film damp-
ing caused by the tuning fork prongs proximity. We choose in the
optimization process a somewhat arbitrary value g = l, which rep-
resents a good trade-off between a gap wide enough to neglect

squeeze film damping and minimum anchor losses by the tuning
fork. In the following, exact expressions from Ref. [8] are used for
the viscous damping quality factor.

The quality factor Qa is associated to the acoustic losses. We
recently reviewed the different expressions valid for tuning forks
vibrating on their in-plane mode of vibration [10], and an expres-
sion using Schmoranzer model [11] has been shown to be relevant
in our case:
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In the latter expression, Jm is the first order Bessel function, ı
designates the Kronecker symbol and k = ω/c  is the vibration
wavenumber.

2.2. Optimal tuning fork as a function of its length

The space of parameters is constituted by the three beam dimen-
sions (e,l,L) and constrained as follows:

• The prong cross section dimensions (e,l) have to be smaller that at
least L/2. This assumption is required in order to use the acoustic
quality factor expression. Moreover, the Euler-Bernoulli bend-
ing theory approximations become irrelevant beyond that limit,
and the quality factor expressions for viscous and thermo elastic
damping can show severe discrepancies.

• The prongs length has to be in a region of interest, and we choose
3�m < L < 0.1m.

For a given length, we  can plot the values of the quality factor as
a function of the cross section dimensions. The quartz young modu-
lus used is E=78.3GPa and its density is �b = 2650kg.m−3. We obtain
typical maps displayed in Fig. 2, from which we can extract the opti-
mum  cross section. We remind that the first resonance frequency

is given by ω0 =
(

˛0/L
)2

e
√

E/ (12�b) with ˛0∼1.875according to
Euler-Bernoulli theory of bending; therefore the beam resonance
frequency increases linearly with the prongs width.
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