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Based on the panel data of 30 sub-sub-sectors of China's nonferrous metal industry from 2004 to 2013, this
paper utilizes a global data envelopment analysis (DEA) to analyze the total-factor productivity (TFP) of China's
nonferrous metal industry from both static and dynamic perspectives. We present the fluctuation of TFP in the
nonferrous metal industry during 2004—-2013 and analyze the key factors responsible for this fluctuation from
the perspectives of production techniques, management and scale. The static analysis results show that the
overall TFP of China's nonferrous metal industry is relatively low, and production inefficiency in the mining and
smelting industries are two primary sources of this overall TFP inefficiency. There are significant differences
among the 30 sub-sub-sectors in TFPs. During our sample period, some sub-sub-sectors experienced rapid
growth in TFP, while others remained at a low level. The dynamic analysis results show differences in the key
factors affecting the TFPs of three sub-sectors. Technical progress was the biggest contributor to the TFP growth
in the nonferrous metal smelting sector, while the rapid increase in scale efficiency was the primary source of

TFP growth in both the nonferrous metal mining sector and the pressing and processing sector.

1. Introduction

Nonferrous metals are important basic and strategic materials for
the national economy, the defense industry, and people’s daily lives in
China. In recent years, the Chinese government has actively promoted
the development of the nonferrous metal industry and has already
achieved positive results. In 2014, the output of ten nonferrous metals®
in China increased by 7.2% annually. The outputs of refined copper,
primary aluminum, and zinc increased annually by 13.8%, 7.7%, and
7%, respectively. At the same time, the total volume of imports and
exports of nonferrous metals rose by 12.1%, reaching $177.16 billion
(MIIT, 2015).

Although the above economic data sounds positive, further devel-
opment of China's nonferrous metal industry must still face many
problems. Firstly, despite constant breakthroughs in the smelting and
processing technologies used in the nonferrous metal industry, and the
implementation of many new projects that have adopted new technol-
ogy, there are still an enormous number of backward production
facilities. Local taxation, personnel placement and debt issues asso-
ciated with shutting down uncompetitive enterprises present a chal-
lenge for local officers. This limits the choice of capacity exit channels.

As a result, the pressure of electrolytic aluminum overcapacity is still
considerable (MIIT, 2015). Secondly, the scale of new projects is
expanding. The number of smelting and processing enterprises has
rapidly increased, reaching 7385 in 2014 with a growth rate of 6% from
2012 (NBS, 2015). Consequently, prices fall, as well as business
income. In 2014, the total profit of China's nonferrous metal industry
was ¥205.3 billion, down 1.5% from the previous year. More specifi-
cally, the total profit of commonly used nonferrous metal mining
sectors and smelting sectors fell by 12.4% and 13.7%, respectively,
compared to the previous year (MIIT, 2015). Moreover, despite the
amount of attention paid to management, nonferrous metal enterprises
often perform poorly when predicting market changes and coping with
price shock. Hence, there is some confusion over the nonferrous metal
industry's efficiency, whether sub-sectors of the industry make progress
and what factors might influence efficiency in production.
Furthermore, nonferrous metal resources vary in types; there are
differences between the different stages of the industrial chain in
regard to various resources concerning terms of technical features,
demand characteristics, application fields, and product prices. Thus,
further analysis is necessary from the perspective of sub-sub-sectors
that have integrated into a full chain in the nonferrous metal industry.
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In terms of evaluating productivity, the traditional approach is to
use single-factor productivity, like capital productivity or labor pro-
ductivity, as a measurable indicator. However, the actual production
process obviously requires a variety of elements (e.g., capital, labor,
and land), as traditional single-factor productivity cannot measure the
relationship between the single factor and other elements. Thus, the
single-factor method cannot accurately reflect changes in productivity
(Zhang et al., 2003). To better analyze the comprehensive level of
productivity and its variations, scholars began to employ total-factor
productivity (TFP) to measure an industry's productivity (Ma et al.,
2002; Tu and Xiao, 2005; Li and Zhu, 2005; Zhang et al., 2010). TFP
refers to the output efficiency generated by the combined effects of
numerous inputs. Compared to the traditional single-factor productiv-
ity, TFP has a more comprehensive consideration of inputs and better
reflects the overall efficiency of an economic system.

Regarding the TFP measuring methods, setting up production
functions, and estimating the production function parameters, the
related methods can be divided into two groups: the parameter method
and the nonparametric method (Mahadevan, 2003). The former
primarily includes the Solow residual method, the growth accounting
method and the stochastic frontier analysis (SFA). The latter includes
the index method and DEA. Efficiency is generally measured using
either DEA or SFA. The DEA method calculates the efficiency value by
constructing a nonparametric production frontier through linear
programming methods. Thus, compared to SFA, the DEA has an
advantage in that it does not require setting the functional form of
the model in advance (Coelli, 1998). The DEA method is therefore
more suitable for estimating the efficiency of multiple inputs and
outputs. Moreover, DEA method can be divided into two types: the
static and the dynamic DEA methods.

The static DEA models include the CCR model based on constant
returns to scale (CRS), and the BCC model based on variable returns to
scale (VRS). The results estimated through static methods represent
the value of the decision-making units’ (DMUs) efficiency. Thus, we can
see the comparison of the results and changes to each DMU's efficiency
with the time series. After the DEA was proposed by Charnes et al.
(1978) and gradually gained popularity, many scholars utilized the
static DEA model for empirical research of TFP in China's metal
industry (Ma et al., 2002; Zhao and Hao, 2003; Jiao et al., 2007; Zheng
and Chai, 2010). However, we need to be clear that, despite their
merits, there are still some flaws in the static methods. Because the
results calculated using static methods only show the TFP of each
DMU, they cannot reveal the factors for changes in each DMU's
efficiency, and static methods therefore fail to provide effective
guidance for production in practice.

The dynamic DEA models contain the DEA-Malmquist and DEA-
Malmquist-Luenberger index. The results estimated using dynamic
methods represent the trend of efficiency over time. According to a
study by Fire et al. (1994), the Malmquist index can be decomposed
into technical changes, pure technical efficiency changes, and scale
efficiency changes. The three components above refer to the technical
progress, management level and productive scale in practical produc-
tion. Many scholars then analyzed TFP changes in many industries
using the dynamic DEA models (Shunsuke and Shinji, 2004; Wang and
Yan, 2007; Wei et al., 2007; Li and Hu, 2008; Wang and Zhu, 2011; He
et al., 2012; Wei et al., 2013; Li and Lin, 2015). However, the dynamic
DEA models depict both changes to and the decomposition of TFP
through constructing a production technology set based on the data of
a single cross section of the DMU. Ultimately, the evaluation results
will lack robustness and generate false technical progress, which
conflicts with the actual production. Therefore, there are certain
limitations in the dynamic methods.

Most studies only measure the TFP using static or dynamic
methods; both have some limitations. To overcome the defects of
inconsistent results between static and dynamic methods due to single-
phase production sets (Wang et al., 2014), this study adopts the global
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DEA and directional distance function (DDF), which calculate the TFP
efficiency indicators on the basis of input and output data in all phases.
This enables us to measure and analyze the TFP of China's nonferrous
metal industry from 2004 to 2013 and present the industry's current
status. Furthermore, we have calculated technical change, pure tech-
nical efficiency and scale efficiency using the global Malmquist-
Luenberger index (GML) decomposition method. Next, we analyzed
the impact on TFP of China's nonferrous metal industry from the
perspectives of technical progress, management levels and production
scale.

The primary purpose of this study is to reveal the differences
between upstream, medium-stream and downstream aspects of the
nonferrous metal industry by calculating and analyzing its TFP and
offering insight into its development. Additionally, in order to analyze
the major factors of changing the TFP using the “static-dynamic”
method from the perspectives of technical progress, management
levels, and productive scale, we can identify the potential for improving
the TFP and provide corresponding advice. We look forward to
providing evidence and guidance for the establishment of a nonferrous
metal industrial policy system.

2. Methods and materials

According to this article's purpose, the calculations are to be
undertaken based on the global DEA method, and the corresponding
analysis is to be discussed from both the static and dynamic perspec-
tives. Therefore, before introducing our empirical DEA models, Section
2.1 first presents a brief introduction to the global DEA method. The
static and dynamic models utilized in this paper are then introduced in
Sections 2.2 and 2.3.

2.1. Concept of the global DEA method

To illustrate the concept of the global DEA method, two definitions
of benchmark technology are essential, i.e., contemporaneous and
global benchmark technologies (Oh, 2010). Let (x, y, b) represent,
respectively, inputs, desirable outputs, and undesirable outputs. P(x)
represents the production possibility set (PPS).

A contemporaneous benchmark technology is defined as:

P'(x") = {(', b")Ix'can produce(y’, b")} (@))

where 7 = 1, ..., T. The contemporaneous benchmark technology con-
structs a reference production set at time 7. This PPS is generated from
the observations only at time 7 (Tulkens and Eeckaut, 1995).

A global benchmark technology is defined as:

&)

This global benchmark technology envelops all contemporaneous
benchmark technologies by establishing a single reference PPS from
the panel data on the inputs and outputs of the relevant DMUs (Pastor
and Lovell, 2005).

Pé=pPyP’u..upP’

2.2. The static model

According to Chung et al. (1997), productivity with undesirable
outputs can be obtained by applying the DDF approach. In this study,
the DDF can be defined as Dq(x, v, b; g) = sup{f: (. b) + Bg € P()}.
Here, g is the directional vector. Subsequently, the DDF can be further
calculated by solving the following linear programming problems:
—
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