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a b s t r a c t

This study explored the electromechanical buckling (EMB) of beam-type nanoelectromechanical sys-
tems (NEMS) by considering the nonlinear geometric effect and intermolecular forces (Casimir force and
van der Walls force) based on modified couple stress theory. To model the system, a slender nanobeam
made of functionally graded material (FGM) with clamped-guided boundary conditions, which is under
compressive or tensile axial loads as well as symmetric and nonlinear electrostatic and intermolecu-
lar transverse loads, is used. Considering the Euler–Bernoulli beam theory and using the principle of
minimum potential energy and the variational approach, the governing equation as well as the related
boundary conditions is derived. To discretize the equation and its related boundary conditions, and to
solve the equations, the generalized differential quadrature method (GDQM) is employed. Finally, after
validation of the results, the effects of size, length, power law index, and the distance between the two
fixed and movable electrodes on the bucking of the system are discussed and examined.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electromechanical systems are classified as conventional elec-
tromechanical systems, microelectromechanical systems (MEMS),
and nanoelectromechanical systems. In recent years, fundamen-
tal and theoretical research, manufacturing systems in laboratory
and nanoscale, and high efficiency computer have resulted in great
achievements in NEMS. The systems are widely used as an actuator
mechanism in the high-tech systems such as aerospace, robotics,
sensors and monitors. Design and analysis of such systems are
not easy, because electromechanically problems are mostly nonlin-
ear and because significant phenomena such as pull-in instability,
electromechanical buckling (EMB) and related design need to be
investigated [1].

In view of the fact that NEMS are in the nanoscale, the signif-
icant phenomena must be investigated in this scale. Here, three
significant phenomena have been examined in the nanoscale in the
modeling of nano-bridge.

The first significant phenomenon is the EMB which consists of
mechanical buckling and electromechanical bifurcation. Mechan-
ical buckling is a well-known phenomenon in the engineering
design. A physical phenomenon of a reasonably straight, slender
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member bending laterally (usually abruptly) from its longitudinal
position due to compression is referred to as mechanical buckling.
Considerable research has been carried out in this field such as: size
dependent buckling analysis based on higher order theories [2,3],
thermal and size effect on free vibration and buckling of micro-
beams [4], buckling of beams and columns under combined axial
and horizontal loading with various axial loading application loca-
tions [5] and also buckling analysis of CNTs and nano-beams using
nonlocal elasticity theory [6,7].

The electromechanical bifurcation is a kind of instability that
results from the inherent nature of electrostatic forces in symmetric
actuators. The response of slender structures which are simulta-
neously under axial stress and electrostatic field, and, as a result,
are simultaneously under axial buckling and electromechanical
bifurcation, is referred to as EMB which has been discussed less.
Electromechanical buckling response was first set theoretically and
experimentally by Abu-Salih and Elata [8,9].

It should be mentioned that microfabricated double-clamped
beams attached to unmovable anchors, are often pre-loaded by
an axial force. This force originates in a residual stress resulting
from the fabrication process [10], appearing due to a tempera-
ture variation [11–13] or applied intentionally in order to control
the stiffness. This pre-load in the beam-type nano-bridges causes
initial curved configuration (arches). These curved beams loaded
by concentrated or distributed transverse forces may exhibit the
existence of two different stable equilibrium under the same load-
ing which is named snap-through instability. The theoretical and
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experimental snap-through instability analysis along pull-in insta-
bility or buckling actuated by a distributed deflection dependent
electrostatic force was presented in [14–21] for static and dynamic
loadings. Recently, a very interesting study has investigated the
snap-through buckling of pre-stressed micro beams [22]. In this
study, the devices were fabricated from single crystal silicon on
insulator wafer using deep reactive ion etching. The in-plane quasi-
static beam response was video recorded and analyzed by means
of image processing [22].

However, in this paper, the beam structure has a flat initial con-
figuration under an electrostatic loading without initial arch-shape,
and constant residual stress is not assumed because of clamped-
guided beam model for nano-bridges; therefore, the snap-through
buckling has not been investigated.

The second important phenomenon in the NEMS is the consid-
eration of the size effect. As clear from the references, in classical
theories, in examining small size structures, the size effect param-
eters of the material’s length is not considered in the constitutive
formulation. However, experimental results show that the size
effect has a significant role in the static and dynamic behav-
ior of structures and materials in the nanoscale. Hence, today,
methods such as molecular dynamic (MD) simulation and exper-
imental results are used to examine and consider the size effect
in the nanoscale. However, it should be noted that considering that
methods such as MD simulation and laboratory methods are expen-
sive, many researchers use higher order and non-classical theories
which contain at least one effect of the parameter of material length
scale in comparison with the classical theory. Some of the higher
order theories are the nonlocal theory, couple stress theory and
strain gradient theory which are used for predicting the depend-
ency on the size effect of micro/nanostructures [23–25]. Yang et al.
obtained the modified couple stress theory with simplification of
the couple stress theory. A length scale is preferred in this theory
to the classic one to investigate the size dependent [24].

The third phenomenon which needs to be taken into account
in NEMS is van der Waals (vdW) or Casimir intermolecular force.
The vdW force in sizes lower than a few tens of nanometers affects
the function of NEMS. This force is a general attraction in nature.
It is a short range force, such that if it distances from the plate, it
quickly becomes zero. The other phenomenon which is effective
in distances more than a few nanometers is the Casimir force. This
force is produced by the oscillations of the magnetic force in the
vacuum between the two plates. When the distance between the
two surfaces is large enough, i.e., bigger than plasma wavelength
(for metals) and attraction (for dielectrics) of the material’s surface,
the virtual photons emitted from the atom of one surface will not
reach the second surface during their lifetime. In this case, the inter-
play between the two surfaces is expressed with the Casimir force.
Several research studies have been done in this field such as: size
dependent pull-in instability of torsional nano-actuator [25], the-
oretical study of the Casimir attraction on the pull-in and buckling
instabilities [26,27], modeling the dispersion forces on the pull-
in instability [28–30], Casimir effect on the pull-in parameters of
nanometer switches [31], nonlinear behavior for nanoscales elec-
trostatic actuators with Casimir force [32] and influence of van der
Waals and Casimir forces on electrostatic torsional actuators [33].

Because of the growth of mechanical materials and their appli-
cation in the micro/nanoscale, the use of functionally graded
materials (FGMs) is sometimes preferred over the use of materi-
als with fiber structure, particularly under thermal loads, because
there is no internal or boundary gap between them. When external
force is applied to these materials, stress peaks in the struc-
ture of such materials diminish, and, consequently, failure due to
lack of internal cohesion and stress concentration is prevented.
Therefore, besides the three phenomena mentioned above, the
effects of FGMs on the EMB must be examined, too. These materials

are formed in two or more phases with continuous variable dis-
persion. Phase dispersion variation can affect weight or volume
fraction, direction, or shape of the object. With the development
of FGM technology, these materials are used in MEMS/MEMS and
atomic microscopes because of their high and optimal function and
sensibility [34]. Studies have been done to examine the use of these
materials in the investigation of buckling like mechanical buck-
ling of FGM micro beam based on the couple stress theory [35–37],
the strain gradient theory [23] and the nonlocal Timoshenko beam
theory [38].

Now, by modeling the EMB of FGM nanobeam in NEMS and
taking into consideration the aforementioned phenomena in the
nanoscale, the governing equation of the system in nonlinear and its
appropriate solution method need to be used, too. For this purpose,
this study used the generalized differential quadrature method
(GDQM). The DQ method is a numerical discretization technique for
the approximation of derivatives. This method is based on the idea
of conventional integral quadrature. The key to DQM is to deter-
mine the weighting coefficients for the discretization of a derivative
of any order. In recent years, the application of the DQM to solve the
structural differential equations and the size dependent problems
has been of interest to many researchers. This method is devel-
oped by the assumption that the partial derivative of a function
with respect to a space variable of a given discrete point can be
expressed as a weighted linear sum of the function values at all dis-
crete points in the domain of that variable. The application of the
DQM covers almost all the areas of structural and vibration anal-
ysis of beams, arches, shafts, plates and shells. Some researchers
extensively studied the deflection, buckling, and vibration prob-
lems using DQM [39]. Also, some research has probed the beam
and shell vibration [40–42], pull-in instability in NEMS [43] and
buckling analysis of MEMS by DQM [3].

With respect to aforementioned assumptions, the EMB of FGM
nano-bridge based on the modified couple stress theory is investi-
gated in this paper with a view to the geometrical nonlinear effect
and transverse electrostatic and intermolecular nonlinear forces. A
slender FGM nanobeam with clamed-guided boundary condition is
used to model the system. Considering the Euler–Bernoulli beam
theory and using principle of minimum potential energy, the gov-
erning equations and associated boundary conditions are derived.
To solve the equation and associated boundary conditions, GDQ
method is employed. Finally, after validation of results, the effects
of size, length, power law index, and the gap distance between the
two fixed and movable electrodes on the bucking of the system are
discussed and examined.

2. Basic equations

Based on the modified couple stress theory which is proposed
by Yang et al., the strain energy density (Ū) and total strain energy
(U) of a linear elastic continuum occupying region V are expressed
as [24]

Ū = 1
2

(
�ijεij + mij�ij

)
, (1)

U =
∫
V

Ūdv = 1
2

∫
V

(
�ijεij + mij�ij

)
dV, (2)

where �ij, εij, �ij and mij are the components of the symmetric part
of stress tensor �, the strain tensor ε, the derivatoric part of the cou-
ple stress tensor m, and the symmetric part of the curvature tensor
�, respectively. Based on classic elasticity theory, the stress–strain
relation can be expressed as follows

�ij = �tr (ε) ıij + 2�εij, (3)
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