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A B S T R A C T

Objectives: Rank Preserving Structural Failure Time models are one of
the most commonly used statistical methods to adjust for treatment
switching in oncology clinical trials. The method is often applied in a
decision analytic model without appropriately accounting for addi-
tional uncertainty when determining the allocation of health care
resources. The aim of the study is to describe novel approaches to
adequately account for uncertainty when using a Rank Preserving
Structural Failure Time model in a decision analytic model. Methods:
Using two examples, we tested and compared the performance of the
novel Test-based method with the resampling bootstrap method and
with the conventional approach of no adjustment. In the first
example, we simulated life expectancy using a simple decision
analytic model based on a hypothetical oncology trial with treatment
switching. In the second example, we applied the adjustment method

on published data when no individual patient data were available.
Results: Mean estimates of overall and incremental life expectancy
were similar across methods. However, the bootstrapped and test-
based estimates consistently produced greater estimates of uncer-
tainty compared with the estimate without any adjustment applied.
Similar results were observed when using the test based approach on
a published data showing that failing to adjust for uncertainty led to
smaller confidence intervals. Conclusions: Both the bootstrapping
and test-based approaches provide a solution to appropriately incor-
porate uncertainty, with the benefit that the latter can implemented
by researchers in the absence of individual patient data.
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Modern randomized controlled trials (RCTs), which remain the
gold standard in terms of evaluating the efficacy and safety of
new interventions, often accommodate treatment switching
from the control group to the experimental treatment group at
some point during the trial. Treatment switching is primarily
driven by ethical considerations; for instance, it would be uneth-
ical to disallow treatment switching for patients randomly
allocated to therapy shown to be inferior in an interim analysis,
particularly in cases where no other nonpalliative therapy
options exist. Moreover, treatment switching can be used to
boost trial recruitment, for example, by allowing switching after
a primary endpoint has been observed (commonly, progression-
free survival) [1]. It has been reported that over half the recent
health technology assessments (HTAs) in oncology performed by
the National Institute for Health and Care Excellence (NICE) in
England and Wales and the Pharmaceutical Benefits Advisory
in Australia have involved trials that included treatment switch-
ing [2].

Standard statistical approaches used in the analysis of RCTs
are designed to compare groups based on the intention-to-treat
(ITT) principle, which means that patients are analyzed according

to their randomized treatment assignment and that all patients
who were enrolled and received treatment are included in the
analysis [3]. When patients in both groups receive the investiga-
tional intervention in a trial, such conventional analyses may not
provide an accurate estimate of the comparative effectiveness of
the two therapies, particularly for endpoints, such as overall
survival (OS), which is critical for cost-effectiveness analysis,
even though it is often not the primary endpoint of the trial.
Although it is ethically justifiable to allow patients to switch to an
experimental therapy after reaching the primary endpoint (e.g.,
progression-free survival), which may be the key endpoint for
regulatory approval, methods are required to adjust for the
effects of treatment switching on other endpoints (e.g., OS) that
are crucial for health economic analysis and HTA decision
making.

Simple methods of adjusting for treatment switching have
been historically used in HTAs, such as those excluding switchers
from the analysis or censoring their data at the time of switch,
but these can create selection bias because treatment switching
is often related to prognosis [4]. Recent recommendations indi-
cate that these simple approaches should be avoided for the
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estimation of OS and replaced with methodologies that preserve
randomization and are designed to address the issue of bias
instead [5]. The Rank Preserving Structural Failure Time (RPSFT)
model, inverse probability of censoring weights and two-stage
adjustment estimation methods have all been shown to produce
unbiased adjustments, provided the assumptions underpinning
them hold true [6–8]. The RPSFT method, introduced by Robins
and Tsiatis, provides an estimate of the OS time for the control
group had treatment switching not occurred [6]. It estimates OS
measured from the time of treatment switching by applying an
estimate of the benefit of the experimental treatment (derived
iteratively and referred to as the inverse of the acceleration factor).
This method assumes that the benefit of the experimental treat-
ment is the same whether it was received from the time of
randomization or only received later as a switch treatment
(referred to as the “constant treatment effect” assumption).

Given the potential confounding caused by treatment switch-
ing, it is important that appropriate adjustment methods are
used for health economic analyses based on treatment switching
trials and for informing HTAs. For example, in a 2012 NICE
appraisal of vemurafenib for the treatment of melanoma the
incremental cost-effectiveness ratio was decreased from over
₤75,000 per quality-adjusted life year gained to approximately
₤52,000 after adjusting for treatment switching [9]. This evidence
suggests that failure to appropriately adjust for treatment switch-
ing has the potential to lead to misinformed HTA decision
making. Although the use of adjustment methods in HTA sub-
missions is beginning to be accepted in some countries, there is
paucity of data on the role of adjustment methods in probabilistic
sensitivity analysis (PSA), which is used to capture uncertainty
and inform decision making in the HTA process [2,10]. PSA can be
defined, in terms of a health economic modeling analysis, as the
process in which “all input parameters are considered as random
quantities and therefore are associated with a probability
distribution that describes the state of science” [11]. The most
commonly used adjustment method (RPSFT model) is known
to introduce additional uncertainty when estimating (adjusted)
hazard ratios (HRs) in treatment switching trials, an effect
which also has the potential to influence HTA decision
making [6]. When survival times are adjusted for treatment
switching within decision analytic models, these adjusted HRs
are rarely used explicitly. Instead, more commonly parametric
survival curves are generated based on the adjusted patient
survival.

The aim of the present study was to describe novel
approaches to adequately adjust for uncertainty when using an
RPSFT model, by (1) simulating life expectancy using a straight-
forward decision analytic model based on a hypothetical oncol-
ogy trial with treatment switching, and (2) applying one of the
approaches on published data to demonstrate the value of
adjusting for uncertainty when using RPSFT models.

Methods

In a standard application of RPSFT model proposed by Robins and
Tsiatis [6], two different survival times for a patient, i, are
considered with notation:

• Ti– the observed survival time
• Ui– the latent survival time with no treatment

An accelerated failure time model is proposed to relate these,
such as:

UiðφÞ¼TCiþTEie
φ

where TEi is the observed time on experimental therapy, and TCi

is defined as TCi¼Ti−TEi. The treatment parameter theta ðφÞ is an
unknown with true value φ0. By assuming the latent survival
times will be balanced through randomization a g-estimation
procedure can be used to estimate φ0. This g-estimation proceeds
by proposing a candidate set of values for the unknown param-
eter φ; estimating the latent survival time UiðφÞ for both arms and
then comparing as randomized using a suitable test. The candi-
date value of φ which leads to no difference in the comparison of
the latent survival time as randomized is then taken as the
estimate for φ0. Using this estimate for φ0 the counter factual
latent survival Ui for the control arm can then be compared with
the observed survival time Ti of the experimental arm using
standard statistical methods. Robins and Tsiatis noted that when
considering confidence intervals (CIs) for HRs estimated from
RPSFT corrected data, the P value from the test used in the g-
estimation procedure should be used to create symmetric CIs [6].
This is typically done by estimating an adjusted standard error
(SEADJ) for the treatment effect ( β) using equation 1, where X2

ITT is
the chi-square statistic from the log rank test used for g-
estimation applied to the ITT comparison.

SEADJ β̂
� �

¼ β̂ffiffiffiffiffiffiffiffiffi
X2
ITT

q ð1Þ

The present analysis describes an extension to this approach
for use in parametric extrapolation and comparison with the
alternative approach of bootstrapping with a small simulation
study. The simulation study and a reanalysis of published data
are used to illustrate the impact of not performing such a
correction on PSA in a decision analytic model.

Estimating the Covariance Matrix Using an Adjustment
Factor

The method assumes that an RPSFT model has been used to
estimate counterfactual survival times for patients on standard
care and assuming that treatment switching had not occurred
following the approaches described in detail in the literature
[6,8,12]. Following this step, the algorithm to apply the adjust-
ment to a parametric covariance matrix is as follows:

1. Fit a parametric survival model to the observed data for the
experimental arm and the counterfactual control arm sur-
vival, including a treatment effect parameter (coded to indi-
cate being on control arm therapy relative to experimental
arm, so the intercept represents the effect of experimental
treatment). This is done so all the additional variance from
the RPSFT method is contained in the treatment effect and is
not split between the treatment effect and the intercept.

2. Derive an adjustment factor using equation 2, where SEADJð βÞ
is defined as with equation 1, where β is the estimate of the
treatment effect from the parametric model, and SEOBS βð Þ is
the estimated standard error.

F¼ SEADJ βð Þ
SEOBS βð Þ ð2Þ

3. Multiply all components of the covariance matrix that involve
covariance with treatment effect by this adjustment factor.
This assumes that the correlation between the parametric
model parameters and treatment effect is not modified
through the use of the RPSFT adjustment. This is illustrated
for a Weibull model with parameters µ (intercept), β (treat-
ment effect for control relative to experimental) and γ (shape)
in equations 3 and 4; however, very similar derivations apply
for other parametric survival models. Equation 3 shows the
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