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a b s t r a c t

The conventional investigations for atmospheric turbulence have assumed that the refractive-index
fluctuations of atmosphere are statistically homogeneous and isotropic. Developments of experimental
and theoretical investigations have shown that the isotropic turbulence generally exists near the ground,
and in the free atmosphere layer above the ground the anisotropic turbulence appears. Hence, deviations
from the previously published results obtained with the isotropic turbulence assumption are possible. In
this study, new analytic expressions for the anisotropic atmospheric turbulence modulation transfer
function (MTF) are derived for optical plane and spherical waves propagating through anisotropic non-
Kolmogorov turbulence. They consider both an anisotropic coefficient and a general spectral power law
value in the range 3 to 4. When the anisotropic coefficient equals one (corresponding to the isotropic
turbulence), the new results obtained in this work can reduce correctly to the previously published
analytic expressions under isotropic non-Kolmogorov turbulence. The derived MTF models physically
describe the turbulence anisotropic property of high atmospheric layer. Numerical calculations show
that with the increase of anisotropic factor which is proportional to the atmospheric layer altitude, the
atmospheric turbulence produces less effect on the imaging system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Atmospheric turbulence has a significant degrading impact on
the quality of imaging system due to the random fluctuations of
atmospheric refractive-index, and this can be described by the
MTF. At the very beginning, researches were focused on the
Kolmogorov turbulence and analytic expressions for the turbu-
lence MTF were derived. With the development of experimental
equipments and theoretical investigations, the atmospheric tur-
bulence has been proved to deviate from prediction of the
Kolmogorov model [1–5]. In these cases, the non-Kolmogorov
effect is associated with an exponent different from 11/3 (for
Kolmogorov turbulence). And a series of non-Kolmogorov atmo-
spheric refractive-index fluctuations spectral models, including
the non-Kolmogorov spectrum [6], the generalized exponential
spectrum [7] and the generalized modified atmospheric spectrum
[8], have been adopted to derive the theoretical expressions for the
non-Kolmogorov turbulence MTF [7,9,10]. In these investigations,
the isotropic atmospheric turbulence assumption was adopted.

The sizes of turbulence eddies were assumed to be the same in
both vertical and horizontal directions.

However, laboratory and theoretical results have shown that the
atmospheric turbulence can also be anisotropic [11–22] in the free
atmospheric above the boundary layer. The horizontal size of these
eddies is typically tens of meters across or, in some cases, kilometers
across. While the vertical size of the outer scale cells is usually
confined to a few meters. In this case, the free atmosphere is highly
anisotropic. Recently, many researchers have focused on the investiga-
tions of anisotropic non-Kolmogorov turbulence [22–25] which fea-
tures both the non-Kolmogorov and anisotropic turbulence cases.
Toselli [22] used the spectrum introduced by Gurvich [26] and Kon
[27] to theoretically investigate the long term beam spread and
scintillation index for Gaussian beam under weak anisotropic non-
Kolmogorov turbulence with horizontal path. Then, Gudimetla [23,24]
studied the log-amplitude correlation function for plane and spherical
waves under weak anisotropic non-Kolmogorov turbulence. When
turbulence strength continues to increase beyond the weak
turbulence regime, Andrews [25] developed mathematical models
for the Gaussian beam propagating through weak-to-strong anisotro-
pic non-Kolmogorov turbulence. For the anisotropic non-Kolmogorov
atmospheric turbulence MTF, there have been no related investiga-
tions so far, and the existing MTF models derived for isotropic non-
Kolmogorov turbulence are not applicable.
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In this study, the anisotropic non-Kolmogorov turbulence
refractive-index fluctuations spectrum is adopted to investigate
theoretically the MTF for optical plane and spherical waves
propagating through anisotropic non-Kolmogorov atmospheric
turbulence. Numerical calculations are then performed to analyze
the impacts of spectral power law values and anisotropic factor on
the final expressions.

2. Anisotropic non-Kolmogorov spectrum

The conventional isotropic non-Kolmogorov power spectrum
over the inertial subrange takes the form as [6]

Φn_isotropicðκ;αÞ ¼ AðαÞU Ĉ2
n Uκ

�α; ð0rκo1;3oαo4Þ: ð1Þ

AðαÞ ¼ 1
4π2Γðα�1Þ cos απ

2

h i
ð2Þ

where, AðαÞ is a constant which maintains consistency between
the refractive index structure function and its power spectrum, α

is the general spectral power law value, Ĉ
2
n is the generalized

structure parameter with units m3�α, ΓðU Þ is the gamma function.
κ is the wavenumber related to the turbulence cell size,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2x þκ2yþκ2z

q
. κx, κy, and κz are the components of κ in the x,

y, and z directions.
To introduce the notion of anisotropy into the spectrum model,

a more general model of the structure function is adopted, which
takes the form as [27]

Dn R;α; ςð Þ ¼ A αð ÞbC2
n

x2þy2

ς2
þz2

� �α=2

; l0⪡R⪡L0 ð3Þ

In which, R is a vector spatial variable, ς is the anisotropic factor
and it carries the burden of representing the anisotropy in this
format by assuming different values. ς parameterizes the asym-
metry of turbulence cells in both horizontal and vertical directions.
When ς equals one, the isotropic turbulence is shown. As the
horizontal turbulence outer cell is always bigger than the vertical
turbulence cell, the value of ς is always bigger than one. As ς
increases, the anisotropic property exhibits more obviously.

Eq. (3) was established to represent the horizontal symmetry
usually employed to analyze anisotropic turbulence. By making
the changes of variables x¼ ςx0 and y¼ ςy0, the resulting structure
function becomes isotropic in the new spatial variable
R0 ¼ ðx0; y0; zÞ. This is vital in the theoretical investigations of optical
waves' propagation through anisotropic turbulence. In view of the
relationship between the structure function and the turbulence
spectrum ΦnðUÞ [6]:

Φnðκ;α; ςÞ ¼
1

4π2κ2

Z 1

0

sin ðκRÞ
κR

∂
∂R

R2∂DnðR;α; ςÞ
∂R

� �
dR ð4Þ

the resulting ΦnðU Þ will be isotropic in the stretched wave number
space κx' ¼ ςκx, κy' ¼ ςκy, and κz' ¼ κz. In this case, ΦnðUÞ for the
anisotropic turbulence becomes

Φnðκ;α;ςÞ ¼ AðαÞU Ĉ2
n Uς

2 U ðκ'Þ�α ¼ AðαÞU Ĉ2
n Uς

2 U ½κ2z þς2ðκ2xþκ2yÞ��α=2 ð5Þ

where κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2z þς2ðκ2x þκ2y Þ

q
. Eq. (5) catches the essence of aniso-

tropy and is well suited to analytical operations [22,25]. When
ς¼ 1, the anisotropic non-Kolmogorov spectrum reduces to the
conventional isotropic non-Kolmogorov turbulence spectrum. For
the analysis directly below, it is assumed that the propagation is in
the z direction (κz ¼ 0) and the circular symmetry is maintained in
the orthogonal xy-plane throughout the path just like [22,25].

Hence, the spectrum model (Eq. (1)) in this case becomes [22,25]

Φn κ;α; ςð Þ ¼ A αð ÞU Ĉ2
n Uς

2�α Uκ�α; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2x þκ2y

q
: ð6Þ

At this time, the relationship between the anisotropic non-
Kolmogorov turbulence spectrum and the isotropic non-Kolmogorov
turbulence spectrum is established, and the anisotropic property is
exhibited by the factor ς2�α . This relationship is very useful in the
theoretical investigations for optical waves propagating through
anisotropic non-Kolmogorov turbulence. In the following analysis,
this anisotropic non-Kolmogorov turbulence spectrum will be
used to derive the analytic expressions of anisotropic non-
Kolmogorov turbulence MTF.

3. The long exposure MTF model for optical waves propagating
through weak anisotropic non-Kolmogorov turbulence

Following the analysis of Hufnagel [29] and Fried [30], the long-
exposure atmospheric turbulence MTF can be deduced from the
formulation of the mutual coherence function (MCF) in the
receiver aperture plane, and it is the product of the MCF evaluated
at ρ¼ λFν. For the case of plane/spherical wave, the long exposure
turbulence MTF in the focal plane of the receiver is given by [30]

MTFturbðνÞ ¼ exp �1
2
DωðλFνÞ

� �
ð7Þ

where ρ is the separation between points in the image plane
transverse to the direction, ν is the spatial frequency measured in
cycles per unit length, F is focal length. DωðλFνÞ represents the
wave structure function for plane/spherical wave, and it is the sum
of the log-amplitude structure function and the phase structure
function. For the isotropic turbulence, it takes the form as [28]

DωpðρÞ ¼ 8π2k2
Z L

0
dz

Z 1

0
½1� J0ðκρÞ�Φn_isotropicðκ; zÞκdκ ð8Þ

DωsðρÞ ¼ 8π2k2
Z L

0
dz

Z 1

0
½1� J0ðκρz=LÞ�Φn_isotropicðκ; zÞκdκ ð9Þ

J0 is the Bessel function of the first kind and zero order, L is the
optical path, and DωpðρÞ and DωsðρÞ represent the plane and
spherical wave structure functions, respectively. For the isotropic
non-Kolmogorov turbulence, the general spectral power law α will
be considered,Φn_isotropicðκ; zÞ will be replaced byΦn_isotropicðκ; z;αÞ.

As stated in Section 2, the anisotropic non-Kolmogorov spec-
trum Φnðκ;α; ςÞ and the isotropic non-Kolmogorov spectrum
Φnðκ;αÞ satisfy the relationship Φnðκ;α; ςÞ ¼ ς2 UΦn_isotropicðκ;αÞ.
As Eqs. (8) and (9) are derived from the Rytov theory, the
relationship between the MTF, wave structure function, and the
turbulence spectrum keep unchanged regardless of the isotropic
or anisotropic turbulence. With the propagation path z considered
in the derivations, Φn_isotropicðκ; zÞ in Eqs. (8) and (9) can be
replaced directly by Φnðκ; z;α; ςÞ. Both the influences of anisotro-
pic factor ς and spectral power law α will be considered.

Dωpðρ;α; ςÞ ¼ 8π2k2
Z L

0
dz

Z 1

0
½1� J0ðκρÞ�Φnðκ; z;α;ςÞκdκ ð10Þ

Dωsðρ;α; ςÞ ¼ 8π2k2
Z L

0
dz

Z 1

0
½1� J0ðκρz=LÞ�Φnðκ; z;α; ςÞκdκ ð11Þ

In the next section, the analytic expressions of plane and spherical
wave structure functions for anisotropic non-Kolmogorov turbu-
lence case will be derived, and subsequently the generalized
anisotropic turbulence long exposure MTF can be obtained.
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