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a  b  s  t  r  a  c  t

In  this  article  we  present  a theory  describing  the  influence  of  the  magnetostrictive  component  size  on
magnetically  tuned  electromechanical  resonance  frequencies  (EMRs)  for ferromagnetic–piezoelectric
heterostructures.  An  analytical  model  to evaluate  the  magnetically  tuned  EMRs  offset  in strip–ring
magnetoelectric  composite  structures  is introduced.  The  model  is  applied  to the  specific  case  of  PZT
(ferrite-lead  zirconate  titanate)-strip/TDF  (Terfenol-D)-ring  composite.  Numerical  simulation  of  mag-
netically  tuned  EMRs  offset  indicated  that the magnetically  tuned  EMRs  depend  significantly  on  the  ratio
of  outer  and  inner  radii  of  the  magnetostrictive  ring.  A maximum  value  for  the  magnetically  tuned  EMRs
offset  �f  of  −2.139  × 105 Hz  is found  in a  magnetic  field  H =  8.641 × 10−2 T for  b =  1.2a  (b  and  a  are  outer
and inner  radius  of  magnetostrictive  ring).  This  theoretical  work  is  significant  for  designing  ME  devices
and  understanding  the  magnetically  tuned  EMRs  in  strip–ring  composite  structures.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In recent years, magnetically tuned electromechanical reso-
nances (EMRs) in magnetoelectric (ME) composites have attracted
increasing interest because of their promising applications as mag-
netic field sensors, tunable devices, and as transducers [1–6].
Magnetically excited EMRs in multilayer capacitors (MLCs) that
comprise magnetostrictive nickel electrodes and piezoelectric lay-
ers BaTiO3 (BTO) were considered by Srinivasan et al. These authors
investigate the influence of an applied magnetic field H on the
resonant frequencies fn(H), and attribute the resonant frequency
shift to the �EY effect [7]. C. Israel and co-workers based on
strain-mediated magnetoelectric (ME) effect theory and the equa-
tion of medium motion approximation for solving the relationship
between the piezoelectric capacitance and external magnetic field,
have simulated the resonant frequency in multilayer capacitors
(MLCs) [8]. We  have also used this principle to calculate the rela-
tionship between capacitance and external magnetic field and the
resonant frequency in sandwich magnetoelectric composite struc-
ture [9]. However, because these studies were all focused on layered
structures, the interaction force between magnetostrictive and
dielectric materials was shear stress [10–12] and consequently only
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in a limited number of cases a resonant frequency shift has been
observed. For example, the largest experimental value for the reso-
nance frequency shift reported was �f  = 1.25 × 103 Hz (�f = fH − f0,
where fH is the resonant frequency in the magnetic field H and f0
is the resonant frequency in zero magnetic field) [8]. Generally,
magnetically tuned EMRs is similar in nature to the magnetoelec-
tric effects. The change of compliance coefficients (�E effect) in
the ferromagnetic phase allows the resonance frequency of the ME
composite to be tunable via the external magnetic field [7].

Recently, Wu  [13,14] theoretically predicted stronger ME effect
in disk-ring structures. Therefore, it is interesting to investigate
the influence of magnetic field H on the resonant frequencies
in samples with special-shape geometry. We  previously studied
magnetically tuned EMRs in strip–ring magnetoelectric compos-
ites, the magnetostrictive (Ni–Zn ferrite ring) and piezoelectric
(PZT strip) phases being coupled through normal stresses, but the
largest experimental value for the resonance frequency shift was
only �f  = 0.9 × 103 Hz, and the theoretically predicted value was
�f = 1.58 × 103 Hz [15]. The motivation for these results can be
detailed as follows: (1) The influence of small magnetostrictive
coefficient for the ferromagnetic material (Ni–Zn ferrite). The prob-
lem could be eliminated by using ferromagnetic materials with
large magnetostrictive coefficient (such as Terfenol-D). (2) In the
theoretical model of strip–ring magnetoelectric composites, we
found that the size of the material will influence the magneti-
cally tuned resonant frequency offset, especially the size of the
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Fig. 1. Schematic of strip–ring magnetoelectric composite structure.

magnetostrictive component. Therefore, in this paper, we  focus
on optimizing magnetostrictive material size in order to achieve
maximum frequency deviation.

On the basis of our experimental studies, the purpose of this
article is going to discuss theoretically the influence of the size of
the magnetostrictive materials on the frequency offset by means
of simulation. The simulation process and conclusion can help us
to understand the frequency offset, and predict the performance of
the device, and optimize the geometry of the device. In this paper,
using the strip–ring composite structure model (the piezoelectric
and magnetostrictive material are ferrite-lead zirconate titanate
(PZT) and Terfenol-D, where PZT and Terfenol-D are strip and ring
respectively) and the relationship between the piezoelectric capac-
itance and external magnetic field, we have calculated the resonant
frequency in strip–ring composite structure. Essentially, we  have
studied the influence of the magnetostrictive element size on res-
onant frequency offset in applied magnetic field.

In the next section one presents the theoretical model for the
strip–ring composite structure analyzed in this paper. The theo-
retical model is developed in the following section and the results
obtained in the simulations are presented and discussed in the final
section.

2. The piezoelectric phase capacitance in strip–ring
composite structure

The piezoelectric and magnetostrictive materials were used for
the strip and ring, respectively, as shown in Fig. 1. The magne-
tostrictive and piezoelectric phases are coupled through normal
stresses [13,14]. The PZT pole direction is along the thickness
direction (direction 3 in Fig. 1). This configuration enables the
piezoelectric phases to operate in longitudinal resonance mode.
The magnetostrictive direction is along the radius direction. Dc
magnetic field is applied along the direction 1 (Fig. 1). An orthogonal
coordinate system and a cylindrical coordinate system are used for
the piezoelectric and the magnetostrictive phases, respectively. The
generalized Hooke’s law and corresponding constitutive equations
are given by [13,15]

pS1 = ps11
pT1 + pd31

pE3 (1)

pD3 = pd31
pT1 + pε33

pE3 (2)

mSr = msB
11

mTr + msB
12

mT� + mq11H1 (3)

mS� = msB
12

mTr + msB
11

mT� + mq12H1 (4)

where p and m are indicating piezoelectric and magnetostrictive,
respectively. pS1, pT1, pD3 are the components of the strain tensor,
stress tensor and electric displacement under orthogonal coordi-
nate system; mSr , mS� , mTr , mT� , are the components of the strain
tensor, stress tensor are obtained in the cylindrical coordinate sys-
tem of r, �; pE3 and H1 are electric and magnetic fields, pd31 and
pε33 are piezoelectric coefficient and permittivity, ps11 is the com-
pliance coefficients of piezoelectric phase in constant electric field.
mSB

11 and mSB
12 are the compliance coefficients of the magnetostric-

tive phase. It should be noted that for the magnetic field directed

along 1, mSB
11 and mSB

12 should be replaced by following equations
[8]

msB
11 = ms11 −

mq2
11(H) + mq2

12(H)
u11

(5)

msB
12 = ms12 −

mq2
11(H) + mq2

12(H)
u11

(6)

where mq11 = d�11/dH1, mq12 = d�12/dH1 are piezomagnetic
coefficients, �11 and �12 are the magnetostrictive coefficients, and
�11 is the permeability.

In the orthogonal coordinate system, as shown in Fig. 1 (on the
right), the equation of elastodynamics for the piezoelectric phase,
is given by:

pS1 = ∂pux

∂x
(7)

p�
∂2pux

∂t2
= ∂pT1

∂x
(8)

where pux and p� are displacement and the density of the piezo-
electric phase. According to Eq. (1), pT1 can be obtained as:

pT1 =
pS1 − pd31

pE3
pS11

. (9)

The general solution of Eq. (8) is given by:

pux = A1 sin(kEx) + A2 cos(kEx) (10)

Due to the symmetry of the stress tensor, the pux should be zero
when x = 0.

Thus Eq. (9) can be rewritten as:

pux = A1 sin(kEx) (11)

where kE =
√

p�pS11ω. ω is angular frequency and A1 is the coeffi-
cient to be determined.

Similarly, in cylindrical coordinate system, the equation of elas-
todynamic for the magnetostrictive phase can be written as

mSr = ∂m
ur

∂r
(12)

mS� =
mur

r
(13)

∂mTr

∂r
+

mTr − mT�

r
+ �ω2mur = 0 (14)

From Eqs. (3) and (4), mT� , mTr can be obtained as:

mT� =
msB

11
mS� − msB

12
mSr − (msB

11q12 − msB
12q11)H1

msB2
11 − msB2

12

(15)

mTr =
msB

11
mSr − msB

12
mS� − (msB

11q11 − msB
12q12)H1

msB2
11 − msB2

12

(16)

The general solution of Eq. (14) is given by:

mur = A3J1(kMr) + A4Y1(kMr) + B

kM
2r

(17)

where kM =
√

m�((msB2
11 − msB2

12)/msB
11)ω, B = (q11 − q12)(1 + m
)H1,

m
 = msB
12/msB

11; J1 and Y1 are the first and second kind Bessel func-
tions of order 1, A3 and A4 are the coefficients to be determined.

Therefore there are three unknown coefficients, A1, A3 and A4
to be determined by taking into account the three boundary con-
ditions

mur |r=a = pux|x=a (18)

mTr |r=a = pT1|x=a (19)
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