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a  b  s  t  r  a  c  t

This paper  describes  a relatively  general  method  based  on  a transfer  matrices  approach,  for  modeling
piezoelectric  Langevin-type  transducers  presenting  a curved  geometry.  The  obtained  equations  are  sim-
ple enough  to  be  solved  for a  vast  number  of  configurations  and  be easily  implemented  in a  program.  The
paper explains  how  they  were obtained  and  how  they  can  be solved  using  a method  involving  transfer
matrices.  The  model  was  also  employed  to  simulate  a real  transducer  and  a good  agreement  was  found
between  calculated  and  measured  data.  Also  the  results  given  by  model  were  compared  with  those
obtained  with  FEM  software  ANSYS,  again  the  model  proved  to  work  well.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Piezoelectric transducers are currently used in numerous fields such as medical imaging, non-destructive testing, damping control,
and energy harvesting [1,2]. Another interesting application is the use of piezoelectric transducers as pure actuators in ultrasonic welding
machines, drills or scalpels [3,4], acting as sources of vibrating power. Such devices usually have a similar geometry: there is a back mass
and a waveguide that fix the resonance frequencies of the system, pre-stress the ceramics and transfer vibration to the interested region,
usually a tip. The modeling of such a device could be quite difficult, wherefore the finite element method is widely used [5,6].

There are of course many, more simple models of curved piezoelectric devices (cantilever beams, laminated plates, membranes con-
taining piezoelectric elements) [7–11] but we could not find among them one which would be suitable to use for a Langevin-type curved
transducer, in which we were interested. This could be explained by the fact that most ultrasonic transducers have a straight shape because
they are more easy to manufacture and also to study. For such devices there were many studies which implemented 1D models which could
take into account the variation of the cross-section, different configurations of piezoelectric materials [12] involving transfer matrices [13]
or equivalent electrical transmission lines [14].

These analytical models give only approximate results but can be easily implemented in a simple program and are useful for the design
of a piezoelectric vibrating system when there is no FEM software at hand and fast calculations are required. An analytical model for a
curved piezoelectric transducer could also be interesting for the same reasons but as we  already said we  did not manage to find such a
model. On the other hand, many studies have been carried out on vibration of curved elastic structures [15–20]. We  thus decided to deduce
a similar model in which the presence of piezoelectric elements has been taken into account.

The paper is organized as follows. First we describe the used hypothesis and notations, and give the resultant differential equations. Next
we explain how these equations can be solved using a transfer matrix approach. We  subsequently apply the model to a simple example
and also solve it using finite element modeling (Ansys). Following this, the two  sets of results are compared. In order to validate the model,
the prototype of a simple curved transducer was built and in the last part of the paper the measured admittance of piezoelectric ceramics
is compared with its calculated counterpart.
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Fig. 1. Possible geometry of a vibrating piezoelectric transducer.

Fig. 2. (Left) Toroid bodies. A cylinder can be considered a toroid with an infinite radius. (Right) Possible discretization of a body with a gradually changing cross-section.

2. Theory

Let us assume that we have a piezoelectric vibrating system, powered by a stack of ceramics excited in longitudinal mode by a sinusoidal
voltage. The geometry of this device could resemble the one represented in Fig. 1.

Such a transducer could contain curved parts situated in different planes, and the cross-section could change gradually along the device.
On the other hand, the piezoelectric stack is considered to be cylindrical in shape (but its cross-section does not have to be circular) and
polarized along its axis. In order to proceed to further analyses, we  need to define some basic concepts. First, we should discretize the
entire volume, approximating it by a set of successive toroid volumes (Fig. 2).

As will be seen later, this leads to linear differential equations with constant coefficients that are relatively simple to solve. We  now
numerate each part, starting with the back mass extremity and use the notation Pn for the n part. Anywhere inside Pn we  can define a
cross-section and we can also find an infinite number of arcs perpendicular to them. Let us from now on consider for each Pn a particular
arc and call it Cn. There should be no obligatory continuity between Cn and Cn+1. For each point of Cn we  denote by l the total length of
curves Ci that connect this point to the one at the extremity of C1. The point itself is denoted G(l). Next, for any G(l) we define a Frenet
frame (G(l), �x, �y, �z) such that �z is the tangential vector, �y is the radial vector and �x = �y ∧ �z (Fig. 3).

For any G(l), there is a cross section S(l) and we  can suppose for any point M ∈ S(l) that its displacement can be expressed as:

�uM = �uG + �ϕ ∧ −−→
GM + �d (1)

Here: �uM: displacement vector of a point M ∈ S(l); �uG: displacement vector of the point G(l); �ϕ: rotation vector of the section S(l); �d: in-plane
S(l) displacement of the point M;  → GM: vector connecting G(l) to M

∧: vector product.
Each vector can be decomposed into the corresponding Frenet frame:
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Fig. 3. Schematic view of different defined objects.
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