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a b s t r a c t

This paper proposes a robust method to analyze night vision data. A new kernel manifold algorithm is
designed to match an ideal distribution with a complex one in natural data. First, an outlier-probability
based on similarity metric is derived by solving the maximum likelihood in kernel space, which is
corresponding with classification property for considering the statistical information on manifold. Then a
robust nonlinear mapping is completed by scaling the embedding process of kernel LLE with the outlier-
probability. In the simulations of artificial manifolds, real low-light-level (LLL) and infrared image sets,
the proposed method show remarkable performances in dimension reduction and classification.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of night vision technology (LLL and
infrared imaging), it is essential to represent high-dimensional
night vision data in low-dimensional space and preserve intrinsic
properties to facilitate subsequent recognition and visualization.
Many manifold dimension reduction algorithms with appealing
performances, including LLE, ISOMAP, and LPP [1–6], can be
introduced to discover intrinsic structures in night vision data.
However, heavy noises in LLL image and low contrast in infrared
image may produce outliers, which will lead to inaccurate
embedding.

Aiming at reducing the interference of outlier, two types of
solutions are mainly developed: preprocessing procedures of
detecting outliers and filtering noisy data [4,7]; improving the
local distance metric to fit the classification property [8,9]. Never-
theless, the intrinsic manifold structures of night vision image
usually have a high degree of complexity and randomness, which
causes the obtained classification results to deviate from actual
situation when the classificatory distribution is discrete or selec-
tion of samples are not representative [10,11]. So automatic
unsupervised manifold method should be studied in night vision
data, it will have a better similarity estimation, which is corre-
sponding with classification property. This similarity estimation
discovered from statistical regularities of large datasets will
provide an effective measure for selection of neighbors and
inhibition of outliers.

This paper proposes a robust manifold dimension reduction
and classification algorithm against deformed distributed data,
kernel space maximum likelihood (KML) scaled LLE (KLLE) method
(KML-KLLE), to solve the problems mentioned above. A KML
similarity metric is presented to detect outliers and select neigh-
borhood to produce an accurate mapping of high-dimensional
night vision data. Compared with works in [4,7,8], the KML
similarity emphasizes local statistical distribution of the manifold
to evaluate the outlier-probability instead of computing the dis-
tance metric among data. Besides, an outlier-probability scaled
KLLE method is proposed to suppress outliers in LLL and infrared
images.

Section 2 introduces the KML similarity metric. Section 3
details the outlier-probability scaled KLLE method, which is the
whole KML-KLLE algorithm. Section 4 presents several experi-
ments on artificial manifolds and real LLL and infrared image sets.
Section 5 makes some discussion about the proposed algorithm.
Finally, Section 6 serves as the conclusion.

2. KML similarity metric

Maximum likelihood (ML) method based on probability dis-
criminant function and Bayesian criterion analyzes the statistical
information of noise image comprehensively. It is especially
suitable for estimation of the abnormal distribution and detection
of outliers in images with fine structures. In addition, the ML
method has simple prior knowledge integration and algorithm
structure to be implemented [12–14]. Inspired by the concepts and
advantages, we introduce ML to evaluate the outlier-probability of
each sample point in feature space of LLL and infrared images.
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The dataset in high-dimensional input space is fxigi ¼ 1;:::;M . Each
sample point xi ¼ ðxi1; xi2; :::; xiDÞT has ML value with their N-neigh-
bors X¼ fxjgj ¼ 1;:::;NAw:

MLðxiÞ ¼ Pðxi=wÞ=PðwÞ ¼ PðwÞ
ð2πÞq=2 Σwj j1=2

exp �1
2
ðxi�μwÞTΣ�1

w ðxi�μwÞ
� �

ð1Þ
here μw and Σw is the mean value and covariance in neighborhood
w. Assuming that classification of each neighborhood has the same
prior probability PðwÞ, the ML similarity estimation function sðxiÞ
can be expressed as follow by taking the logarithm of MLðxiÞ.
sðxiÞ ¼ ln Σw þðxi�μwÞTΣ�1

w ðxi�μwÞ
����

Σw ¼ 1
N

∑
N

j ¼ 1
ðxj�μwÞðxj�μwÞT ; μw ¼ 1

N
∑
N

j ¼ 1
xj ð2Þ

here larger sðxiÞ indicates higher outlier-probability of xi.
ML estimation is under the premise of normal distributed

features in images, whereas the characteristics of night vision
image do not follow a normal distribution. To eliminate the
negative effects of Gaussian distribution assumption, we use
kernel ML (KML), which nonlinearly maps the input signal to
kernel space through kernel function ϕðU Þ and detects outliers by
ML in kernel space. On the one hand, the nonlinear information of
night vision data can be mined. On the other hand, Gaussian
distribution assumption of data in kernel space means the com-
plicated input spatial distribution, which is much closer to real
situation.

The only difference between the input space and the kernel
space is that we nonlinearly map each input sample xi in input
space to kernel space through kernel function ϕðU Þ, so the sample
in kernel space can be expressed as ϕðxiÞ. Then the mean value and
covariance of neighborhood w in kernel space are modified as
μwϕ ¼ ð1=NÞ∑N

j ¼ 1ϕðxjÞ and -

Σwϕ ¼ ð1=NÞ∑N
j ¼ 1ðϕðxjÞ�μwϕÞðϕðxjÞ�μwϕÞT . Thus the KML similarity

metric function is transformed as follow.

sðϕðxiÞÞ ¼ ln Σwϕ

�� ��þðϕðxiÞ�μwϕÞTΣ�1
wϕðϕðxiÞ�μwϕÞ

Σwϕ ¼ 1
N

∑
N

j ¼ 1
ðϕðxjÞ�μwϕÞðϕðxjÞ�μwϕÞT ; μwϕ ¼

1
N

∑
N

j ¼ 1
ϕðxjÞ ð3Þ

The eigenvalue of Σwϕ is Λwϕ ¼ fΛl
wϕgl ¼ 1;:::;N and eigenvector is

Vwϕ ¼ fVl
wϕgl ¼ 1;:::;N . Set ϕwðxjÞ ¼ ϕðxjÞ�μwϕ and ϕwðXÞ ¼ fϕw

ðxjÞgj ¼ 1;:::;N , there are Σwϕ ¼ ð1=NÞϕwðXÞϕT
wðXÞ and Vl

wϕ ¼∑N
j ¼ 1α

l
j

ϕwðxjÞ ¼ ϕwðXÞαl, αl ¼ ½αl1; αl2; :::; αlN �T . Insert Σwϕ ¼ ð1=NÞϕwðXÞϕT
wðXÞ

and Vl
wϕ ¼ ϕwðXÞαl into Λl

wϕV
l
wϕ ¼ΣwϕVl

wϕ can acquire Eq. (4).

NΛl
wϕϕwðXÞαl ¼ ϕwðXÞϕT

wðXÞϕwðXÞαl ð4Þ

Multiply Eq. (4) by ϕT
wðXÞ on both sides of the left and set

Kw ¼ ϕwðXÞ;ϕwðXÞ
� �

to obtain NΛl
wϕαl ¼Kwαl. Kw ¼K�IK�KIþIKI

is the kernel matrix, here K¼ fkðxki; xkjÞgki;kj ¼ 1::N , kðxki; xkjÞ ¼
ϕðxkiÞ;ϕðxkjÞ
� �

and I is the unit matrix. Set Λw as the eigenvalue
of Kw and Vw as the eigenvector. From NΛl

wϕαl ¼Kwαl we can get
Λw ¼NΛwϕ, Vw ¼ α¼ fαlgl ¼ 1;:::;N and Vwϕ ¼ ϕwðXÞVw. So the
pseudo-inverse of Σwϕ is:

Σ�1
wϕ ¼VwϕΛ�1

wϕV
T
wϕ ¼ ϕwðXÞVw

1
N
Λw

� ��1

VT
wϕ

T
wðXÞ ¼NϕwðXÞK�1

w ϕT
wðXÞ

ð5Þ
Then the KML similarity metric function sðϕðxiÞÞ is finally

converted as:

sðϕðxiÞÞ ¼ ln Σwϕ

�� ��þðϕðxiÞ�μwϕÞTΣ�1
wϕðϕðxiÞ�μwϕÞ

¼ ln Σwϕ

�� ��þNðϕðxiÞ�μwϕÞTϕwðXÞK�1
w ϕT

wðXÞðϕðxiÞ�μwϕÞ ð6Þ

here

ϕðxiÞTϕwðXÞ ¼ ϕðxiÞT ½ðϕðx1Þ;ϕðx2Þ;…;ϕðxNÞÞ�μwϕ� ¼Kxi

¼ ðkðxi; x1Þ; kðxi; x2Þ;…; kðxi; xNÞÞ� ∑
N

j ¼ 1
kðxi; xjÞ=N

and

μT
wϕϕwðXÞ ¼ μT

wϕ½ðϕðx1Þ;ϕðx2Þ; :::;ϕðxNÞÞ�μwϕ�
¼Kμ ¼∑N

j ¼ 1ðkðxj; x1Þ; kðxj; x2Þ; :::; kðxj; xNÞÞ=N
�∑N

ki ¼ 1∑
N
kj ¼ 1kðxki; xkjÞ=N2

Simultaneously, based on the definition of determinant, detðΣwϕÞ
is the directed area or directed volume of super parallel polyhedron
constituted by row or column vectors in Σwϕ. Therefore Σwϕ

�� �� can be
approximately calculated as the summation of distances between
centralized sample vectors and eigenvector in Σwϕ:

Σwϕ

�� ��� ∑
N

j ¼ 1
ðϕðxjÞ�μwϕÞTVwϕVT

wϕðϕðxjÞ�μwϕÞ

¼ ∑
N

j ¼ 1
ðϕðxjÞ�μwϕÞTϕwðXÞVwVT

wϕ
T
wðXÞðϕðxjÞ�μwϕÞ

¼ ∑
N

j ¼ 1
KpVwVT

wK
T
p ð7Þ

here

Kp ¼ ϕðxjÞTϕwðXÞ�μT
wϕϕwðXÞ

¼ ðkðxj; x1Þ; kðxj; x2Þ; :::; kðxj; xNÞÞ� ∑
N

ki ¼ 1
kðxj; xkiÞ=N�Kμ:

As shown in Eq. (6), ðϕðxiÞ�μwϕÞTΣ�1
wϕðϕðxiÞ�μwϕÞ is kernel maha-

lanobis distance (KMD) actually, which means the covariance distance
between sample point and overall neighbors in kernel space. And in
Eq. (7), ∑ðϕðxjÞ�μwϕÞTVwϕVT

wϕðϕðxjÞ�μwϕÞ is kernel PCA (KPCA)
essentially, which represents the projection distance summation for
overall neighbors on principal component of neighborhood in kernel
space. So KML similarity metric is the combination of KPCA and KMD.
Only when each sample point has the most compact neighborhood
with minimum covariance distance, can it select the best neighbors
and have the highest similarity with neighborhood to gain minimum
outlier-probability and highest reliability.

3. KML outlier-probability scaled KLLE

Locally linear embedding (LLE) method assumes that original sam-
ple set is uniformly and continuously distributed on manifold and that
linear method can be used to analyze the intrinsic structure of data.
However, it is difficult to satisfy in practice. It is known that perfor-
ming LLE in an appropriate kernel space means a complex distribution
of data in the input space [15,16]. We implement kernel LLE method,
and further employ the KML outlier-probability in scaling KLLE to
decrease the interference of outliers. It is the KML-KLLE algorithm,
which essentially integrates the KML similarity and KLLE method.

First, Fc denotes the clean dataset, which is identified by
outlier-probability si of each sample point through sirτ, τ40 is
the threshold of outlier. Use KNN method to choose N-neighbors
of xi and require all neighbors to meet fxjgj ¼ 1;:::;NAFc .

Second, calculate the reconstruction weights
η¼ fηijgi ¼ 1;…;M;j ¼ 1;…;N of the neighbors to minimize the recon-
struction error JðηÞ in kernel space.

JðηÞ ¼ ∑
M

i ¼ 1
‖ϕðxiÞ� ∑

N

j ¼ 1
ηijϕðxjÞ‖2 ð8Þ

Set JðηiÞ ¼ JϕðxiÞ�∑N
j ¼ 1ηijϕðxjÞ2 J , Gi ¼ ½ϕðxiÞ�ϕðxi1Þ; :::;ϕðxiÞ�ϕ

ðxiNÞ�, ηi ¼ ½ηi1; ηi2; :::; ηiN �T and the constraint eTηi ¼ 1, there is
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