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a b s t r a c t

Internal vectorial structure of the beam generated by the Gaussian mirror resonator (GMR) diffracted

through a hard-edged aperture are evaluated in the near-field. Based on the vectorial angular spectrum

representation of electromagnetic fields and the paraxial approximation, TE and TM terms of intensity

distributions of the beam in the near field are derived in analytical forms, respectively. Numerical

results reveal that the behaviors of TE and TM terms not only depend on the parameters of mirror

resonators but also relate to the truncated parameter of the aperture. It is also shown that the

distributions of TE and TM terms would not keep detached from each other because of the

unorthogonality of their vectorial structures in the near field.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

As is well known from numerous reports, optical resonators
with mirrors of the Gaussian reflective profile have gained
substantial interests in the production of high power laser beams.
It is shown that eigenmodes of optical resonators with Gaussian
classical reflective mirrors can be expanded into terms of freely
propagating TEM00 fundamental modes [1]. The discriminations
inducing by the misalignment of Gaussian reflective mirrors of
optical resonators have been evaluated in analytical forms [2].
Since then, many achievements have been made concentrated on
the excitation of large-sized TEM00 modes by the operation of
specific optical resonators. For instance, the output beam with a
near-Gaussian intensity distribution had been obtained in experi-
ments by means of a novel apoditic filter [3]. Subsequently, it has
been verified through experiments that the Gaussian modes with
large sections can be produced in Cassegrain resonators by the
usage of Gaussian reflective convex couplers [4]. The character-
istics of Gaussian beams while transmitting through complemen-
tary reflective couplers show advantages of more brightness in
on-axis intensity distributions together with lower misalignment
sensitivity [5]. Based on the Huygens-Fresnel principle, the
propagation and focusing properties of the beam generated by
the Gaussian mirror resonators (GMR) are studied numerically
[6,7]. Propagation properties of such a beam which passes
through a paraxial optical system are investigated by means of

the generalized Collins formula [8–10]. Explicit expressions for
properties of the beam which propagates through a hard-edged
circular aperture are formulated with the help of the scalar
diffraction theory [11]. The propagation factor of the beam is
derived by the second-order moments and the corresponding
numerical results are shown in modulations with respect to
various parameters [12]. Analytical propagation equations of the
beam which transmits through uniaxial crystals are derived based
on the paraxial vectorial theory of beams in uniaxially anisotropic
medium [13]. Furthermore, through the expansion of the hard-
edged-aperture function into a finite sum of complex Gaussian
terms, propagation properties of the beam which passes through
a truncated Fractional Fourier transform (FFT) optical system are
studied in modulations with respect to resonator parameters [14].
Very recently, a report shows that the bell-shaped, flat-topped
and angular Gaussian beam profiles can be separately generalized
in Q-switched Nd:YAG laser by the modification of magnifications
of the Gaussian mirror resonator [15]. Generally speaking, the
output beam generated by the GMR occasionally is truncated by
an obstruction or limited by finite radius of emitter sources;
therefore the effect of the truncation should be further consid-
ered. Besides, as we all know, the TE and TM terms of a vectorial
beam would remain orthogonal to each other in the far field.
However, the property cannot hold true for the following two
cases, i.e. the evaluation close to sources or in the near field. The
near field corresponds to the situation that the on-axis propaga-
tion distance is only larger than a few wavelengths. In this case
the TE and TM terms of the whole beam would not remain
detached from each other. In this paper, the vectorial structure of
the truncated beam generated by the GMR in the near field is
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revealed. Analytical expressions are derived for the TE and TM
terms of the beam evaluated in the near field by means of the
vectorial angular spectrum representation of electromagnetic
fields and the paraxial approximation. Furthermore, relations of
TE and TM terms of intensity distributions varying with respect to
resonator parameters are also revealed. The corresponding results
indicate that the TE and TM terms of the beam in the near field
cannot remain orthogonal to each other due to the presence of a
cross-light intensity among the internal vectorial structure of
the beam.

2. Intensity distributions for TE and TM terms of beams in the
near field

The electric field of the beam generated by the Gaussian mirror
resonator through a hard-edged aperture can be given by the
expression [11,14]

Eðr0,0Þ ¼ Aexp �
r02

o2
0

þ ik
r02

2R0

 !
1�K exp �2b2 r02

o2
0

 !" #1=2

circðr0Þ,

ð1Þ

where A denotes the amplitude of a conventional Gaussian beam,
k¼2p/l is the wave number, o0 is the Gaussian waist width, K

represents the on-axis reflectance of the mirror, b¼o0/oc, oc is
named as the mirror spot size where the reflectance of mirrors
reduce to 1/e2 of its peak value. R0 is the so-called wavefront
curvature of the incident beam. When the reflectance of mirrors
tends to the zero mean, i.e. K-0, Eq. (1) converts into the
expression for truncated Gaussian beams. circ(r0) is the so-called
circ function which represents a hard-edged aperture with radius
R located at the initial plane z¼0

circðr0Þ ¼
1, r0rR,

0, r04R:

(
ð2Þ

Eq. (2) can be further expanded into a finite sum of complex
Gaussian terms [16,17]

circðr0Þ ¼
XN

h ¼ 1

Ah exp �
Bhr02

R2

� �
, ð3Þ

where N is the number of complex Gaussian terms, Ah, Bh are the
coefficients of which the values can be indexed in Table 1 of Refs.
[16,17]. Due to the convergence property of the exponential
function in Eq. (3), N¼10 is large enough to provide high accuracy
in numerical calculations. By performing binomial expansions to
the factor ½1�K expð�2b2

ðr02=o2
0ÞÞ�

1=2, Eq. (1) can be alternatively
rewritten as
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with
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Furthermore, it is further assumed that the wavefront of
incident beams locates at the plane of Gaussian mirrors, i.e.
R0-N should be satisfied in Eq. (6). Eqs. (4)–(6) deliver the
message that the complex electric field of beams generated by the
GMR can be obtained by the superposition of finite Gaussian
fields each with different amplitude and waist width.

By means of the vectorial angular spectrum representation of
electromagnetic fields, the propagating electric field of a beam
with linear polarization along the x-axis can be given in the
cylindrical coordinate system [18–22]

Eðr,j,zÞ ¼

Z 1
0

Z 2p

0
Axðb,yÞ êx�

bcosy
m

êz

� �
exp ik rbcosðy�jÞ

��
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where m¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

p
, r¼(x2

þy2)1/2 denotes the position vector
located at the output plane z. Ax(b,y) is the component of the
vectorial angular spectrum along the x-axis, which can be
expressed by the Fourier transform of the initial electric field
component

Axðb,yÞ ¼
1

l2

Z 1
0

Z 2p

0
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y, j and a denote the azimuthal angles with regard to the
coordinate systems (r,j,z), (b,y,0) and (r0,a,0), respectively. êx

and êz separately denotes the unit vectors along the x and z axis.
The inequation bo1 corresponds to the case of homogeneous
plane waves; while b41 is in agreement with evanescent waves.
Furthermore, in order to obtain the electric fields for the TE and
TM terms of the vectorial beam, three unit vectors ê1,ê2 and ŝ
which make up of a mutually perpendicular right-handed system
are defined [23–32]

ŝ� ê1 ¼ ê2, ê1 � ê2 ¼ ŝ, ê2 � ŝ¼ ê1, ð9Þ

with

ê1 ¼ sinyUêx�cosyUêy, ê2 ¼mcosyUêxþmsinyUêy�bêz, ð10Þ

ŝ¼ bcosy êxþbsinyUêyþmêz, ð11Þ

Correspondingly, the propagating electric field of a beam in the
cylindrical coordinate system can be expressed as a sum of TE and
TM terms

Eðr,j,zÞ ¼ ETEðr,j,zÞþETMðr,j,zÞ, ð12Þ

with ETE(r,j,z) and ETM(r,j,z) separately being given by
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By substituting Eqs. (4)–(6) into Eq. (8) and performing the
Fourier transform, the vectorial angular spectrum component
yields the following analytical form:
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subsequently, substituting Eq. (15) into Eqs. (13) and (14),
respectively, and utilizing the integral formula [33]

JnðkrbÞ ¼
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