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A B S T R A C T

This paper presents an empirical analysis of the effects of temperature on Direct Current Fast Charger (DCFC)
charging rate and discusses the impact of such effects on wider adoptions of electric vehicles (EVs). The authors
conducted statistical analysis on the effects of temperature and constructed an electric vehicle charging model
that can show the dynamics of DCFC charging process under different temperatures. The results indicate that
DCFC charging rate can deteriorate considerably in cold temperatures. These findings may be used as a reference
to identify and assess the regions that may suffer from slow charging. The problems associated with temperature
effects on DCFC charging deserve greater attention as electrification of motor vehicles progresses and DCFC
usage increases in the future.

1. Introduction

Although the affordability of electric vehicles (EVs) has dramati-
cally improved in the past few years, that affordability is nowhere near
that of their gasoline counterparts. EVs at competitive prices with ga-
soline counterparts are available in the current market; however, they
are typically equipped with small battery packs that can only support a
very limited driving range per charge. Because high-capacity lithium-
ion batteries come with a high price tag, fast public charging has often
been considered as an alternative solution to extending the limited
driving range of EVs (Schroeder and Traber, 2012; Morrissey et al.,
2016; Bernardo et al., 2016; Burnham et al., 2017; Levinson and West,
2017; Neaimeh et al., 2017; Bryden et al., 2018; Yang, 2018). However,
fast charging a lithium-ion battery is a complicated process with many
shortcomings. One of the most notable limits of charging lithium-ion
batteries is the variable charging rate that is susceptible to different
environmental conditions—which occurs as the onboard battery man-
agement system limits the charging rate to avoid detrimental effects on
the battery cells (Motoaki and Shirk, 2017). Cold temperature in par-
ticular can considerably degrade the charging rate and extend the
duration of charging, which potentially pose challenges in EV operation
in cold regions. Therefore, in a large country like the United States
where regional climate can vary from coast to coast, fast charger de-
ployment for EVs requires careful consideration regarding the effects of
regional temperature on fast battery charging.

However, the literature on EV infrastructure planning and policy in
the light of the temperature effects on EV fast charging are limited. Past

studies typically assumed the EV charging process with a constant rate
of charge (Zhang et al., 2012; Dong et al., 2014; Zenginis et al., 2016;
Wang et al., 2017) and the effects of temperature on EV charging were
neither accounted for or discussed. However, because cold tempera-
tures have substantial effects on the performance of lithium-ion bat-
teries (Dubarry et al., 2013; INL; Ji et al., 2013; Jaguemont et al., 2016;
Lindgren and Lund, 2016), the findings from previous studies on EV
infrastructure may alter once the temperature effects are taken into
account. However, data acquisition as well as methodologies to esti-
mate the impacts of temperature on EV fast charging are challenging.
Ideally, statistical modeling should be applied to data that are collected
from repeated experiments in a controlled laboratory environment;
however, data collection of such kind is costly in time and budget.

Alternatively, in this paper we propose that fast charging data col-
lected from on-road vehicles can supplement such needs. More speci-
fically, we use on-road data collected from Nissan Leafs that were op-
erated as taxi cabs in New York City for a case study to statistically
analyze the magnitude of effects of temperature on EV fast charging.
Based on the resulting model, the potential impact of such an effect on
wider adoptions of electric vehicles is subsequently discussed. The no-
velties of this paper are three folds: (1) the application of statistical
methods to field data for modeling the electric vehicle charging process;
(2) the creation of a charging process model (based on the 2012 Nissan
Leaf) that captures the effects of temperature; and (3) the illustration of
the effects of temperature on charging efficiency across various regions
in the United States. The resultant methodology to construct a charging
process model is well suited to be used in the context of the analysis and
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optimization of electric vehicle infrastructure. To the best knowledge of
the authors, no study has examined the effects of temperature on EV
fast charging based on empirical data.

2. Literature review

It is uncertain how commonly the complexity and shortcomings of
the fast charging process are known outside the battery research field.
EV manufacturers typically only provide rough approximations of
charging duration to the public, without specifying the range of con-
ditions in which that said performance is accurate. For example, the
2012 Nissan Leaf owner's manual states that Direct Current Fast
Chargers (DCFCs) are capable of recharging a 2012 Leaf battery from a
10% state of charge (SOC) to an 80% SOC in about 30min (Nissan,
2012), but it does not state how much time is required to charge from
80% to 100% or how much delay is expected under what conditions.
However, the fact is that the rate of charge is variable as it is controlled
by the vehicle's onboard battery management system to avoid over-
charging and damage to the battery, which can be triggered by a variety
of internal and external factors. Among others, cold temperatures have
been shown to have particularly high detrimental effects on lithium-ion
batteries. A review of the findings on the effects of cold temperatures on
lithium-ion battery technology can be found in Jaguemont et al. (2016).

Many EV research areas require a numerical representation of the
DCFC charging process. For example, charging station deployment
often needs to consider the rate of EV charging because a longer
duration of charge means a need for more charging stations for a given
demand. However, the problematic effects of temperature on the fast
charging and their effects on the level of services of the fast charging
have rarely been considered. In fact, the rate of charge is typically as-
sumed constant (Zhang et al., 2012; Dong et al., 2014; Zenginis et al.,
2016; Wang et al., 2017). Although this practice provides computa-
tional convenience in modeling EV charging, it also introduces positive
biases in the performance of EV charging because it does not account
for the variable charging rate. Some previous research attempted to
incorporate the variable charging rate in modeling. For example, Arias
and Bae (2016) adopted a piecewise linear simplification of the char-
ging rate which was originated from Zhang et al. (2012)—it takes
30min to charge from 0% to 80% capacity and an additional 15min
from 80% to 100%. Arias et al. (2017) also adopted a two-piece char-
ging profile linearization with an assumed duration of 36min required
for full charge. Olivella-Rosell et al. (2015) modeled the charging
process as a nonlinear function of SOC and energy required, although
the type of charging station considered was 230-volt alternating current
charging instead of DCFC. Lindgren and Lund (2016), on the other
hand, applied a battery model to simulate charging and discharging of
EV batteries in a simulation study of an EV fleet. Although their use of a
bottom-up-constructed battery model provides more theoretically so-
phisticated characterization of EV fast charging, this approach has
several shortcomings. Firstly, their battery model was based on a single
cell and not a battery pack; thus, to emulate the behavior of the battery
pack, the model input and output were multiplied by an assumed
number of cells in the pack. This scaling practice would also pro-
portionally scale up the degree of bias and error that the single-cell
model contains. The study also placed its focus on level 2 charging
(3.6 kW) instead of DCFC, whose process is more difficult to char-
acterize. The charging processes in the above-mentioned studies were
based on laboratory observations, and the effects of temperature on fast
charging were not examined. Few empirical studies of the temperature
effects on EVs can be found in EV literature. Yuksel and Michalek
(2015) examined the effects of regional climate variation on EVs in
terms of energy consumption, driving and charging patterns, and grid
emissions. Specifically, the authors quantified the temperature effects
on driving range, energy consumption per mile, and carbon dioxide
emissions per mile based on on-road data. Although the authors ac-
knowledged that temperature also affects the charging duration, it was

not examined.
To the best of the authors’ knowledge, the effects of temperature on

EV fast charging rate have never been estimated using on-road data.
One obvious reason for the lack of empirical modeling of the effects of
temperature on fast charging is the unavailability of the particular type
of field data that are needed for the analysis. In order to conduct an
empirical study on the effects of temperature on EV fast charging, the
field data needs to contain detailed records of variables such as timing,
duration, state of charge, temperature, and amount of charge. However,
not only are on-road vehicle data rarely collected, but EV charging also
has very much to do with environmental conditions and human beha-
vior that are extremely difficult to record or control, which makes many
types of analysis simply infeasible. The literature on the use of on-road
vehicle data is quite limited. For example, Sun et al. (2015) and Zoepf
et al. (2013) both used on-road vehicle data to estimate discrete choice
models for the timing of EV charging. Motoaki and Shirk (2017) ex-
amined the on-road data collected as part of the EV Project—a large
scale project funded by the United States Department of Energy—to
investigate the effect of a fixed fee on fast charger utilization. In their
study, it was found that DCFCs can be used inefficiently by a driver if
the vehicle in question is kept plugged in even after the rate of charge
deteriorates considerably. In the data used in the study, each charging
event was recorded in terms of time the vehicle was parked at a DCFC
charge station (i.e., park duration was not necessarily all spent char-
ging), and the actual duration of time spent solely for the purpose of
charging was not known. Therefore, long park duration observed at
those stations with nearby amenities could be attributed to the possi-
bility that the driver left his/her car plugged in at the station and went
shopping or dining without having to make the trade-off between the
time spent at the charging station and the amount of charge. This made
it impossible for the authors to tell if the driver intentionally kept the
vehicle plugged in at a DCFC even after the rate of charge deteriorated
for further charging or he/she simply did not care to come back to the
vehicle in time. Moreover, because each charging event record consists
of park duration and the amount of charge, the variable nature of the
charging rate could not be examined. Temperature at the time of
charging was not recorded in the EV Project data; thus, the effect of
temperature on DCFC charging was also not examined. The findings
from Motoaki and Shirk (2017) show that in an effort to measure the
empirical performance of DCFC, some level of experimental control
must be placed on both the availability of the charger (i.e., a charger
must be available for use when needed) and the behavior of the driver
(i.e., timing of charging must be close to optimal) to reduce their effects
on the patterns of charging.

3. Data

In an effort to mitigate the problems associated with typical on-road
vehicle data discussed above, this present study utilizes on-road data
collected from a number of 2012 Nissan Leafs used as taxis as a part of
the New York City Taxi and Limousine Commission's Electric Vehicle
Pilot Program. During the pilot program several Leafs were provided by
Nissan to taxi fleets and owner drivers for use in normal taxi service.
Two 50-kW DCFCs were available for use by the Leaf taxis in
Manhattan, New York. During the test period, which ran from June
2013 through February 2015, controller area network data were col-
lected by on-board data loggers during vehicle operation and charging.
Collected controller area network signals include battery current, bat-
tery voltage, SOC, vehicle speed, ambient temperature, charge dura-
tion, and vehicle global positioning system location. When the vehicle
was plugged in to a charger, it was recorded as a single event for which
the battery SOC was recorded both at the time the charging was in-
itiated and the time it was ended—the intermediate process of charging
was not included in the data.

Our reasons for the choice of this particular dataset for our study are
twofold. First, in taxi operation, the problems of inefficient use of DCFC,
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