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A B S T R A C T

Shifting to a low-carbon electricity future requires up-to-date information on the energetic, environmental and
socio-economic performance of technologies. Here, we present a novel comprehensive bottom-up process chain
framework that is applied to 19 electricity generation technologies, consistently incorporating 12 life-cycle
phases from extraction to decommissioning. For each life-cycle phase of each technology the following 4 key
metrics were assessed: material consumption, energy return ratios, job requirements and greenhouse gas
emissions. We also calculate a novel global electricity to grid average for these metrics and present a metric
variability analysis by altering transport distance, load factors, efficiency, and fuel density per technology. This
work quantitatively supports model-to-policy frameworks that drive technology selection and investment based
on energetic-economic viability, job creation and carbon emission reduction of technologies. The results suggest
energetic-economic infeasibility of electricity generation networks with substantial shares of: i) liquefied natural
gas transport, ii) long distance transport based hard and brown coal and pipeline natural gas, and iii) low-load
factor solar-photovoltaic, concentrated solar power, onshore and offshore wind. Direct sector jobs can be ex-
pected to double in renewable-majority scenarios. All combustion-powered technologies without natural (bio-
mass) or artificial carbon capture (fossil fuels) are not compatible with a low carbon electricity generation
future.

1. Introduction

Currently, our electricity supply chains are material, fuel, and
carbon emission intensive, and thereby alter the greenhouse gas (GHG)
balance of the planet (Stocker et al., 2013). Substantial world-wide
effort is made to decarbonise our energy system, with the aim of a
global GHG emission reduction of at least 80% by 2050 (United
Nations, 2016; Rogelj et al., 2016). Emissions in the electricity sector
need to be reduced to half of current levels by 2030, and with 85% by
2050 to meet a 2° global warming emission reduction target (OECD/IEA
and IRENA, 2017). Several electricity sector technology pathways have
been modelled individually to achieve a low-carbon electricity system,
with varying outcome and accuracy for different technologies, in-
cluding: hydro-power, thermal- and PV-solar, onshore and offshore
wind, biomass, geothermal, nuclear plants, natural gas, and clean coal
with carbon capture and storage (Eom et al., 2015; Heard et al., 2017).

Sound technology policy and investment decision making requires
apple-to-apple comparisons of individual pathways on the performance
of multiple key technology characteristics (Brandt and Dale, 2011).
Model based scenario calculations of GHG emissions and financial cost

outcomes at a grid level has become standard practice, yet the eva-
luation of jobs, material use, fuel use, and overall energy costs to deliver
energy, defined as the Energy Return on Investment (EROI), is still
missing, with only few studies published with insights at the electricity
system level (Kucukvar et al., 2017; Raugei and Leccisi, 2016; Jacobson
et al., 2015). If jobs, material inputs and EROI are not taken into ac-
count, large gaps can result in our understanding of the feasibility of
energy scenarios. This way, the following issues remain unresolved: (1)
whether the mineral resources are available to build the new energy
system (Graedel, 2011); (2) if the speed of required change will be
constrained by skills shortages due to additional employment needs
(Gabriel et al., 2016); and (3) whether the energy cost of newly invested
energy infrastructure will cannibalise upon discretionary energy
available to other sectors (Brandt, 2017).

A key reason why these aspects are not typically calculated is that
the underlying datasets and the methodology to calculate them, are still
evolving. There is not yet a scientific consensus on how metrics should
be calculated, thus a wide variety of methods are used with different
system boundaries, uncertainties and key parameters, which reduces
the robustness and comparability of published values (Cameron and
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Van Der Zwaan, 2015; Jones et al., 2017; Turconi et al., 2013a; Hellweg
and Mila i Canals, 2014). Another challenge is the rapid change of
parameters in the life-cycle inventory data for particular technologies
(Su and Zhang, 2016; Koppelaar, 2016), such as the Energy Return
Ratio of solar-PV (Louwen et al., 2016; Ferroni and Hopkirk, 2016;
Ferroni et al., 2017; Raugei et al., 2017), GHG emissions of liquefied
natural gas (LNG) (Balcombe et al., 2016), job requirements in solar
and wind energy supply chains (Cameron and Van Der Zwaan, 2015),
and energy inputs and emissions in biomass power generation
(Thornley et al., 2015; Thakur et al., 2014; Muench and Guenther,
2013).

Since electricity technology supply chains involve many processes,
especially when accounting for downstream material extraction, con-
centrating and manufacturing, it is imperative to carry out analyses in a
standardised, comprehensive, accurate and transparent manner. Poor
research practices in the absence of a common standard include: i) in-
complete reporting of key parameter assumptions (Koppelaar, 2016), ii)
lack of transparently employed technology boundaries (Turconi et al.,
2013a), iii) comparisons of metrics based on power plant capacity as
opposed to generated electricity (Cameron and Van Der Zwaan, 2015;
Lambert and Silva, 2012), and iv) the absence of variability and un-
certainty analysis stemming from variation in physical and technology
conditions to explore study result differences (Jones et al., 2017).

Consequently, comparisons for single technologies across study re-
sults, let alone comparisons between technologies and on their perfor-
mance, cannot be reliably carried out (Raugei et al., 2017, 2015). De-
spite these obvious shortcomings, a number of meta-analyses have been
published without compensating for differences in system boundaries
(Murphy and Hall, 2010; Hall et al., 2014; Murphy et al., 2016). Yet
since system boundaries and key parameters in underlying studies are
often not accurately reported guesstimates need to be introduced,
which introduces the risk of ‘apple-to-pear’ comparisons (Bauer et al.,
2015; Turconi et al., 2013b).

To address these shortcomings and related model-to-policy needs,
we developed a detailed bottom-up methodology which is compre-
hensive in its life-cycle scope, and can be utilised to calculate key
performance metrics. Our framework consists of 12 cradle-to-grave life-
cycle phases, describing processes and resource flows from raw material
extraction to decommissioning, using 4 metrics to assess material, en-
ergy, and labour inputs as well as GHG emissions per functional unit of
a petajoule (PJ) of electricity output into the local grid at the power
plant. These 4 metrics and the life-cycle framework have been uni-
formly applied on 19 electricity generation technologies, yielding a

robust and reliable technology comparison. In addition, this enables us
to calculate a novel global average benchmark for each metric. The
value can be used for comparison of individual electricity generation
technologies, and to compare global electricity sector transition sce-
narios. Such a comparison helps to understand if a technology or sce-
nario would reduce or increase the value of a respective metric over
time if implemented in the energy system. The added granularity allows
decision makers, which are using a global scenario perspective, to
better rank scenarios and technology options for the overall feasibility
of the global energy transition.

Our analysis is based on standardised life-cycle material and energy
process methodologies (Brandt and Dale, 2011; Murphy et al., 2016),
and incorporate specific data reporting recommendations from previous
studies for electricity generation technologies (Turconi et al., 2013a).
All calculations are carried out on a bottom-up engineering (physical)
basis, also referred to as process chain analysis (PCA), as opposed to
using financial values to estimate physical inputs, which can result in
aggregation bias (Majeau-Bettez et al., 2016; Weisz and Duchin, 2006).
The impact of min-max parameter variability on results was also ana-
lysed for transport distances, load factors, power plant efficiency and
fuel density. Geographic and supply chain differences are thereby
captured by approximation to provide a more accurate understanding
of how local technology factors between countries impact results. The
presented results do not show values at individual country level but
give an approximation. Specific country values are not the scope of this
paper, as it would also require study and reporting on grid-level supply-
demand analysis and scenario creation for each country (Raugei and
Leccisi, 2016), which demands an individual study in its own right, and
for which the results presented here are a pre-requisite.

2. Methods

2.1. Technologies, boundaries and metrics

Nineteen electricity generation technologies were selected for the
analysis, listed in Table 1, along the technology acronyms used in the
article. To capture solar-PV irradiation differences three variants were
calculated based on north-Chile, south-Spain, and the United Kingdom,
using solar load factors 39.0%, 27.6%, and 13.6% based on 2-axis
tracker geo-localized renewable energy data (Pfenninger and Staffell,
2016, 2017). Pipeline and liquefied natural gas (LNG) tanker variants
for natural gas power plants were also modelled.

Composite technology estimates were made for the global electricity

Table 1
Technologies and key parameters used in the analysis.

Technology Acronym Load Factor (%)
Min/Base/Max

Efficiency (%) Min/
Base/Max

Fuel Density (GJ/
tonne)

Lifetime
(years)

(%) Annual
Degradation

Parasitic load
(%)

Pulverized hard coal PH-coal 62% 30%/42%/45% 22.0 40 0.16% 5.3%
IGCC hard coal IGCC-coal 62% 30%/42%/45% 22.0 40 0.16% 11.0%
Lignite coal plant L-coal 62% 26%/38%/43% 9.0 40 0.16% 9.0%
CCGT baseload CCGT-bl 62% 38%/50%/62% 48.0 34 0.20% 1.5%
CCGT load following CCGT-lf 44% 35%/46%/58% 48.0 34 0.20% 1.5%
SCGT peaker plant SC-peak 8% 22%/32%/50% 48.0 34 0.10% 1.5%
SC-Heavy Fuel Oil peaker HFO-peak 24% 27%/29%/47% 42.8 34 0.10% 8.0%
Biomass Municipal Waste Bio-MSW 53% 10%/20%/27% 9.3 25 0.20% 13.0%
Biomass wood pellets Bio-WP 62% 14%/32%/39% 17.3 40 0.20% 5.0%
EPR gen. III nuclear EPRIII-nuclear 40%/74%/95% 30%/33%/50% 5,014,000 40 0.20% 4.2%
Geothermal-hydrothermal Geo-HT 41%/74%/95% n.a. n.a. 30 0.20% 7.9%
Enhanced Geothermal Geo-EGS 41%/74%/95% n.a. n.a. 30 0.20% 46.0%
Onshore Wind On-Wind 14%/22%/60% n.a. n.a. 25 0.40% 3.5%
Offshore Wind Off-Wind 20%/39%/55% n.a. n.a. 25 0.40% 0.7%
Hydro-electric Dam Hyd-Dam 11%/46.4%/95% n.a. n.a. 60 0.20% 6.0%
Hydro-electric ROR Hyd-RoR 30%/46.4%/90% n.a. n.a. 60 0.20% 1.0%
Polysilicon Solar-PV Sol-PV 13.6%/27.5%/39% 14%/17%/24% n.a. 25 0.50% 1.0%
Solar-CSP trough Sol-CSP 15%/27%/35% n.a. n.a. 30 0.20% 7.2%
CSP trough w 12 h Sol-CSP-Salt 30%/55%/70% n.a. n.a. 30 0.20% 15.0%
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