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A B S T R A C T

Learning rates enable the generation of first-order estimates of the cost of a technology as cumulative production
grows, and play an important role in energy-economic modelling. This paper extends the component-based
approach to estimating future learning rates to the case of a technology with multiple variants. It sets out a
bottom-up method for estimating the composite learning rate including the situation where the proportional
contribution of the different variants changes as cumulative production increases. The method is demonstrated
for carbon storage using representative cost and distribution data from recent studies of storage in the European
region.

Carbon storage comprises four technology variants defined by the nature of the storage reservoir – (onshore
or offshore) depleted oil & gas reservoirs and (onshore or offshore) saline aquifers – and each variant has a
different learning rate reflecting its different cost structure. Moreover, the proportional contribution of each
variant to total storage is likely to change with the growth of global storage capacity. The composite learning
rate for carbon storage is estimated for scenarios in which the relative contributions change: a negative learning
rate is determined in one scenario.

1. Introduction

Carbon capture and storage (CCS) is one of a limited number of
competing low-carbon energy technologies able to reduce carbon di-
oxide emissions and contribute to the containment of global warming
(Global CCS Institute, 2015).

Determining the future cost of these technologies is a challenging
issue. One approach is to estimate future learning rates (the learning
rate being defined as the relative reduction in unit production costs for
each doubling of cumulative production). Such learning rates are im-
portant inputs to energy-economic modelling and the development of
energy and climate policy.

In this paper we apply a component-based approach to estimating
learning rates to the general case of a technology with multiple var-
iants. We derive the composite learning rate and model situations
where the proportional contributions of the different variants – the
distribution – may change as cumulative production grows.

This approach is illustrated for the case of carbon storage. Because
this technology comprises four technology variants distinguished by the
nature of the storage reservoir – (onshore or offshore) depleted oil and
gas reservoirs and (onshore or offshore) saline aquifers.

The remainder of the paper is organised as follows. Section 2

backgrounds the literature on technology learning and the component-
based approach to estimating learning rates. The technological activ-
ities in carbon storage are analysed and two cost components which are
common to each of the four technology variants are identified. Section
3 presents data from recent modelling studies of carbon storage for the
European region, including cost and future distribution data.

Section 4 sets out a bottom-up component- based method for de-
termining the learning rate of an emerging technology with multiple
variants and the method is illustrated for the case of carbon storage. In
Section 5 the method is summarised and the results discussed. The
concluding section considers the wider implications of this study.

2. Background

2.1. Technology learning

The role of technology learning in the reduction of the unit costs of
production with accumulating production has been the subject of
considerable study. The concept has its origins in observations at the
plant level for aero-manufacturing where a uniform decrease in labour
inputs accompanied each doubling of cumulative production (Wright,
1936). The systematic link between decreasing unit production costs
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and cumulative volume has since found empirical support in a wide
range of products and has been extended to industry sectors and tech-
nologies. A total of 47 of the 48 energy technologies analysed by
McDonald and Schrattenholzer (2001) followed this pattern. Recent
studies of technology learning in power generation have included
consideration of CCS with a principal focus on carbon capture (Rubin
et al., 2007; van den Broek et al., 2009; Azevedo et al., 2013; Rubin
et al., 2015).

Technology learning is commonly modelled as a learning curve
which plots unit costs against cumulative volume of production. This
single factor relationship may be expressed as:

= −C Q C Q Q Q( ) ( ). [ / ]t t
b
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where Qt is the cumulative production,

b is the positive learning parameter,
C Q( )t is the unit cost of production at Qt ,
C Q( )0 and Q0 are respectively the cost and cumulative production at
an arbitrary starting point.

The relationship may be plotted as a learning curve or alternatively
as a linear function on a log-log scale. The associated learning rate (LR)
is defined as the relative cost reduction in unit production costs for each
doubling of cumulative production:

= − −LR 1 2 b (1a)

or × − −100 (1 2 )b when the learning rate is expressed as a percentage.
The underlying mechanics of technology learning are not well de-

fined. Early formulations of the process of "learning by doing” at a plant
level linked falling unit labour costs to productivity improvements from
repetitious manufacturing through increased labour efficiency, work
specialisation and improved production methods (Arrow, 1962). With
the extension of the concept to industry wide technologies has come the
need to expand this explanation. Other complementary and, in varying
degrees, overlapping mechanisms include “learning by searching”
which focuses on technology improvements enabled by RD&D invest-
ment (Cohen and Levinthal, 1989); “learning by using” (Rosenberg,
1982); “learning by diversity” (Newbery et al., 2009); “learning by
scaling” (Sahal, 1985); “learning by copying” – taking advantage of
knowledge spillovers from other industries (Sagar and van der Zwaan,
2006); and “learning-by-interacting” within the innovation system
(Kamp et al., 2004; Lundvall, 2010).

Two-factor and multifactor modelling approaches to technology
learning have been developed but the single factor model is commonly
used to represent endogenous technical change in energy-economic
modelling (Wiesenthal et al., 2012). Learning rates relate technology
improvement or cost reduction to other parameters in the model and
play an important role in energy-environment modelling, notably long-
term integrated assessment models (Kahouli-Brahmi, 2008; Hayward
and Graham, 2013).

2.1.1. Component learning
The component learning approach (Ferioli et al., 2009) extends the

single factor model by treating the cost of a technology as a sum of the
costs of its individual components. It allows technology improvement to
occur at different rates for different components. Assuming that the cost
of each component decreases over time according to a power law re-
lation as a result of learning, then the technology learning relationship
may be expressed as follows (where the index i represents a given cost
component):
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where b i( ) is positive learning parameter for component i,

C Q( )t is the unit cost of production at cumulative production Qt ,
Q0 is the cumulative production at an arbitrary starting point,
C i0 is the cost and Q i0 is the cumulative production of component i at
an arbitrary starting point.

Component learning is a way of disaggregating the technology
learning process into separate parts (e.g. plant and equipment, oper-
ating costs, etc.) and building a composite learning rate based on
analysis of the separate components (Ferioli et al., 2009). This approach
opens the way to improved rate estimation for new technologies by
drawing on historical learning rates for directly comparable technolo-
gies, and then combining them into a single rate. Different components
may well be at different states of maturity: newer components may, for
example, have higher learning rates than mature components, and there
may be components for which zero rates are appropriate.

A caveat in this approach is that writing the function additively
implicitly assumes that the components are separable and non-inter-
active in their effects. Ferioli et al. (2009) comment in relation to
carbon capture and storage, for example, that "the overall learning rate
for total CCS application will probably depend on the interaction be-
tween its individual constituents in a non-trivial way" (p. 2533).

2.2. Carbon storage

2.2.1. Technology variants
CCS is widely seen as an essential element in a least cost technology

package to reduce CO2 emissions from the energy sector. But it is a
technology in early deployment and will need to expand dramatically to
play its full part (Herzog, 2011). Just over 20 million tonnes of CO2 are
currently stored geologically each year. By contrast the IEA's 450 sce-
nario pathway to achieving the two degree climate goal entails per-
manent storage of CO2 rising to 5.1 Gt per year by 2040 and 52 Gt of
cumulative storage by that time (IEA, 2015). Indeed, the integrated
assessment models reviewed at the 27th round of the Energy Modelling
Forum (Kriegler et al., 2014) projected the cumulative storage of CO2

for the 2010–2100 period to be from 600 Gt to 3050 Gt. The implied
expansion from the present base is massive, and would imply a carbon
storage industry by 2050 of a size on a par with the current oil and gas
industry (Bellona Europa, 2014).

There is scope for a massive increase in carbon storage under-
ground. The IPCC (2005) has estimated the global capacity of depleted
fields to be 675–900 Gt and that of aquifers to be up to 10,000 Gt. These
estimates are consistent with recent national data (Consoli and
Wildgust, 2017) and figures for total storage capacity in the United
States of 2600 Gt including 230 Gt in depleted fields (NETL, 2015).
Moreover, numerous areas of high prospectivity have been identified
(IEA, 2011, Appendix 1). Information on depleted fields is available due
to the past operations of the oil and gas industry, but less is known
about the behaviour and the long-term trapping mechanisms of aqui-
fers.

In this study we consider the four technology variants of carbon
storage, as defined by their storage reservoirs. These are (onshore or
offshore) depleted oil and gas fields and (onshore or offshore) deep
saline aquifers (henceforth referred to, respectively, as depleted fields
and aquifers). We do not include enhanced oil recovery (EOR) as a
technology variant in this report. In EOR, the focus is on maximising oil
recovery and sites are traditionally not selected, operated nor mon-
itored to achieve permanent storage. While it may be a useful bridging
technology, it is unlikely to play an important part in the large scale
storage of CO2 needed to achieve global warming targets.

2.2.2. Cost components
Fig. 1 sets out the technological activities involved in the life cycle

of carbon storage at a particular reservoir which typically span several
decades. The selection and characterisation of a suitable site is the
key to effective geological storage. A suitable geological formation must
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