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Abstract

Based on the vectorial Rayleigh–Sommerfeld integrals, the analytical propagation expression of a vectorial Laguerre–Gaussian beam

beyond paraxial approximation is presented. The far field expression and the scalar paraxial result are obtained as special cases of the

general formulae. According to the analytical representation, the light intensity distribution of the vectorial Laguerre–Gaussian beam is

depicted in the reference plane. The light intensity distribution of a vectorial Laguerre–Gaussian beam with cosmj is also compared with

that of a vectorial Laguerre–Gaussian beam with sinmj.
r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

As is well known, the cylindrically symmetric higher
order modes of laser cavities with spherical mirrors are
Laguerre–Gaussian beams [1]. Therefore, the Laguerre–
Gaussian beam receives considerable interest [2–5]. Usual-
ly, the description of a Laguerre–Gaussian beam is by the
approximate solution of Helmholtz equation. The propa-
gation properties of Laguerre–Gaussian beams have been
studied extensively within the framework of the paraxial
approximation. Within the paraxial approximation, the
longitudinal component of Laguerre–Gaussian beam
vanishes, and there is no restriction within the two
transverse components. As a result, it does not satisfy
Maxwell’s equations and loses its inherent vectorial
property, which results in an apparent paradox theoreti-
cally. Moreover, the paraxial approximation is invalid for
beams with a large divergent angle or a small spot size that
is comparable with the light wavelength. Therefore, the
interest in extending the understanding of the Laguerre–
Gaussian beam to the vectorial nonparaxial regime stems
from both theoretical and practical aspects. Various
approaches have been proposed to study the beam

propagation beyond the paraxial approximation [6–9],
one of which, namely the vectorial Rayleigh–Sommerfeld
integrals method, is a suitable one [10,11]. Accordingly, the
description of the vectorial Laguerre–Gaussian beam is
directly derived from the vectorial Rayleigh–Sommerfeld
integrals in the present paper. The analytical formulas for
the nonparaxial propagation of vectorial Laguerre–
Bessel–Gaussian beams have been derived [12]. The
influences of two parameters f and a on the propagation
behavior have also been analyzed. Though the obtained
results can be reduced to those of the cases for vectorial
Lauguerre–Gaussian and Bessel–Gaussian beams, the
propagation expression for the vectorial Laguerre–
Gaussian beam is too complicated. The purpose of the
present paper is to present relatively concise expression.
Moreover, the influence of the angle-dependent relation on
the propagation behavior is also investigated.

2. Propagation of vectorial Laguerre–Gaussian beam

beyond paraxial approximation

As TE polarization is a familiar case, the vectorial
Laguerre–Gaussian beam is treated to be linearly polarized
in the x-direction. The z-axis is taken to be the propagation
axis. The vectorial Laguerre–Gaussian beam at the source
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plane z ¼ 0 is described by
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where w0 is the Gaussian beam waist, and Lm
n is the

associated Laguerre polynomial. n and m are the radial and
angular mode numbers. (r0,j0) denotes the transverse
coordinates in the cylindrical coordinate system. r0 ¼
(x0

2+y0
2)1/2, and j0 ¼ tan�1(y0/x0). The time-dependent

factor exp(�iot) is omitted in Eq. (1), and o is the
circular frequency. By using the vectorial Rayleigh–
Sommerfeld integrals, the vectorial Laguerre–Gaussian
beam propagating toward half free space z40 turns out
to be [10]
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where

Gðr; q0Þ ¼
expðikjr� q0jÞ

jr� q0j
, (3)

r ¼ xi+yj+zk, and q0 ¼ x0i+y0j, where i, j and k are three
unit vectors in the Cartesian coordinate system. k ¼ 2p/l is
the wave number. l is the incident wavelength. The
following approximation is valid beyond the paraxial
approximation [13–15]

jr� q0j ¼ rþ
r20 � 2xx0 � 2yy0

2r
, (4)

where r=(x2+y2+z2)1/2=(r2+z2)1/2. Replacing |r�q0| of
the exponential part in Eq. (2) by Eq. (4) and other terms
by r, one can obtain the propagating vectorial Laguerre–
Gaussian beam as follows:
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where j ¼ tan�1(y/x). Under the integration process, the
following integral formula is satisfied
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where Jv is the vth order Bessel function of the first kind,
and v is an arbitrary integer. Therefore, the x and z

components of the vectorial Laguerre–Gaussian beam can
be expressed in integral form
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where T1, T2 and T3 given by
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with b ¼ l=w2
0, l ¼ 1�izr/r, and zr ¼ kw2

0=2 is the confocal
parameter. By applying the mathematical integral formulaeZ 1
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Eq. (11) can be expressed in the analytical form as
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where C ¼ (zrr
2/rw2(r))+(2n+m+1)tan�1(zr/r), and wðrÞ

¼ w0ð1þ r2=z2r Þ
1=2 is the beam waist. Therefore, the ana-

lytical expression of x component for vectorial Laguerre–
Gaussian beam beyond paraxial approximation reads as
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