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H I G H L I G H T S

� We include O&M and decommissioning stages into the EIO-LCA of wind turbine.
� Both the stages can add up to 200 metric tons of GHG CO2e per turbine life cycle.
� Mean GHG emission rate per turbine is 19 and range is 15–29 g CO2e per KWh.
� Emission intensities can have uncertainties dependent on region-specific traits.
� Regional EIO-LCA can be useful for state compliance to the Clean Power Plan.
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a b s t r a c t

Wind energy is an emerging source for renewable energy. This article presents an application of the
economic input–output life cycle assessment (EIO-LCA) to estimate the greenhouse gas (GHG) emissions
through the life cycle of wind energy farms in a state. The EIO-LCA incorporates manufacturing, in-
stallation, operation and maintenance, and decommissioning of the wind turbine over its life cycle
period. In doing so, the study demonstrates that O&M and decommissioning of infrastructure with a
longer life period can be considered to assess the total environmental impacts. The life cycle costs of
wind turbine installation in Indiana is used in this study. The uncertainty in wind energy production, and
hence the variability in GHG emission intensities in metric tons per gigawatt hour (GWh), is demon-
strated by using the Monte Carlo simulation. The research finds that wind energy production is not
entirely GHG emission-free if all the costs and life cycle stages are considered. Emission estimates have
uncertainty, and O&M and decommissioning can add up to 200 metric tons of GHG emissions in CO2e per
wind turbine life cycle. The regional EIO-LCA can be a helpful tool to determine strategies for state
compliance to initiatives, such as the Clean Power Plan.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy is an emerging renewable source for energy
portfolios for several U.S. states. Wind energy contributed 3% of
electricity for the U.S. in 2012, second only to the 7% contribution by
hydropower among renewables (EIA, 2014). However, wind en-
ergy's share in electricity generation has regional variation. The
share of wind power in total electricity generation within the
Midwestern states ranged from the maximum of 27.4% in Iowa to as
low of 0.8% in Ohio in 2013 (AWEA, 2014). With 3.2% of electricity

coming from wind energy, Indiana, the chosen state for case study,
was close to the national average in 2013. In comparison, Denmark
in 2013 covered more than 40% of total electricity demand from
renewable energy sources with 33% obtained from wind (Gillis,
2014; DWIA, 2014). The European power sector has continued to
adopt renewable energy sources as a replacement for conventional
fossil-based fuels. Since 2000, 55% of the new capacity installed in
Europe has been renewables with 28% being wind (EWEA, 2014).
Wind energy is a relatively new industry in several U.S. Midwestern
states. With the first onshore wind farm commissioned in 2008,
Indiana had 930 operational wind turbines equivalent to 1.5 GW
installed capacity as of the beginning of 2013 (IOED, 2014). As one
traverses the interstates and arterial roads of rural north-central
Indiana, operating wind turbines are common sights.
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Wind energy has proponents who see economic opportunities
and environmental benefits from wind farms. Its opponents are
concerned about destruction of bats and birds, impairment of
habitats and view sheds, electromagnetic interference, disruption
to rural quality of life, and public health issues of noise and sha-
dow flicker. In general, studies on public perceptions have found
acceptance for wind farms (Devine-Wright, 2005), though not
consistently. For example, researchers found more positive atti-
tudes for farther located wind turbines in Texas, USA (Swofford
and Slattery, 2010), whereas in Denmark, they found positive ac-
ceptance for turbines located nearer and even closer than 500 m
(Krohn and Damborg, 1999). A recent study on acceptance of wind
farms in three rural communities in Indiana discovered strong
community level support for wind farms because of financial gains
and environmental benefits (Mulvaney et al., 2013). There is a
general acceptance for wind energy as a national goal; however,
locally, there could be opposition to wind farms even in some
European communities (Wolsink, 2007).

During local and regional deliberations for wind farm locations,
it is imperative for planners, engineers, developers, and elected
officials to be transparent about regional and local pros and cons of
wind energy, including disclosure of relevant facts. In general,
wind energy is represented as an emission-free source of renew-
able energy. The activity of turbine-blade rotation and conversion
of gusty winds into electrical energy is an emission-free activity.
However, if we consider manufacturing, installation, operation and
maintenance, as well as decommissioning of the wind turbines,
there will be some emissions across the entire life cycle. The
present study accounts for those emissions through various life
cycle stages of wind turbines and wind farms.

The research uses the economic input–output life cycle as-
sessment (EIO-LCA) method. In the past some national level EIO-
LCA studies have ignored the operation and maintenance costs
through the life cycle and decommissioning costs at the end of the
life cycle. This study attempts to incorporate those life cycle stages.
The methodology is replicable to any other U.S. state. The fol-
lowing research question guides this paper: how much green-
house gas (GHG) emissions are expected from wind power de-
velopment in a state? The paper is organized into literature re-
view, scope and LCA boundary, methodology and data preparation,
results and discussion, and conclusion and policy implications.

2. Literature review

The literature review focuses on input–output (IO) analysis and
applications for environmental assessment, such as greenhouse
gas emissions, and research addressing uncertainty, especially in
the EIO-LCA. The first successful attempt to integrate externalities
of environmental discharges from economic and industrial activ-
ities through IO analysis was performed by Leontief (1970). He put
forth the basic premise that any environmental discharge, such as
carbon monoxide in the air or polluted water in the streams, could
be linked to industrial processes and, hence, be incorporated in the
structural analysis of the economy through the IO table (Leontief,
1970). Researchers at the Green Design Institute, Carnegie Mellon
University, applied the Leontief framework to different products
and developed an EIO-LCA process using the publicly available
national IO table, which is available through the www.eiolca.net
(Hendrickson et al., 2006; EIOLCA, 2014).

The application of IO in environmental assessment was in some
way a response to the intensive data requirements of the bottom-
up, process-based life cycle assessment (LCA). That approach re-
quired limiting the boundaries of the system for lack of data, time,
and funds (Lave et al., 1995). The inadequate delineation of
boundaries could ignore significant pollution discharges from

excluded life cycle events, including discharges through the in-
direct linkages of IO table according to Lave et al. (1995) or circular
relationships as described by Leontief (1970). The strengths of the
EIO-LCA method include tractability of the life cycle assessment at
the economy wide scale and eliminating the need for artificial
delineation of boundaries (Lave et al., 1995; Hendrickson et al.,
1998).

The weaknesses of EIO-LCA method include inherent limita-
tions of the IO table. Lack of input substitution and economies of
scale, assumed linearity of the IO linkages, insufficient dis-
aggregation of industry sectors in the IO table, and diversity of
industrial processes within an individual industry sector are some
of the limitations (Lave et al., 1995; Hendrickson et al., 1998). An
industry sector at the most detailed 6-digit North American In-
dustry Classification System (NAICS) might encompass manu-
facturing and processing of more than one type of commodity,
resulting in pollution discharge variations within the same in-
dustry sector. Similarly, an establishment can be classified with
one, two, three, or even more NAICS codes dependent on the di-
versity of products and services available. The EIO-LCA method
estimates aggregated impacts and does not consider spatial loca-
tion of those impacts. Despite limitations, the IO-based EIO-LCA
method has been applied for environmental assessment of a
variety of products and services, such as paper versus plastic cups
(Lave et al., 1995), steel reinforced concrete (Hendrickson et al.,
1998), solid waste generation and disposal (Allan et al., 2004),
environmental assessment of food and drink sector (Turner, 2009),
and life cycle analysis of midsize passenger car and electricity
generation (Hendrickson et al., 2006).

EIO-LCA is emerging as one of the prominent tools for design,
product, and policy analysis including carbon footprint assess-
ments (Trappey et al., 2013; Deng et al., 2011; Williams et al.,
2009). According to Williams et al. (2009), life cycle assessment
can have inherent uncertainties and, hence, different types of life
cycle studies for the same product can give different results. Re-
searchers argue for a hybrid approach of using process-based LCA
if detailed data is available, and integrating with the EIO-LCA for
expanded coverage of life cycle stages (Williams et al., 2009; Deng
et al., 2011). There are several sources of uncertainties in EIO-LCA,
such as inconsistency in raw data collection and reporting in the
IO, balancing algorithms used in the IO table, incomplete en-
vironmental emission vectors, and errors in estimates for eco-
nomic output (Williams et al., 2009; Lenzen et al., 2010). Another
source of uncertainty identified by Bullard et al. (1976) was a
significant lag of seven years between collection and publication of
the U.S. Bureau of Economic Analysis (BEA) IO data. However, BEA
now publishes annual IO data in aggregated form. For example,
compared to IO data for 388 industries for 2007, aggregated an-
nual IO data available from BEA from 1997 to 2012 is for 71 in-
dustry sectors. Aggregation of industry sectors and environmental
vectors makes the data tractable but can introduce uncertainty
into the EIO-LCA method (GDI, 2015). Bullard and Sebald (1988)
used Monte Carlo simulation on the BEA 1967 IO table and noted
that aggregation of the IO table had minimal effect on un-
certainties of the parameters. Chakraborty et al. (2010) studied
aggregation bias in the Canadian IO table and found that most of
the sectors had marginal errors with a few sectors showing sizable
errors. However, Lahiri (1983) showed that both over and under-
estimation of IO parameters was feasible with assumptions of
stochasticity in the IO table and the final demand vector. Hen-
drickson et al. (2006) demonstrated uncertainty in IO analysis by
introducing errors to an element of A, direct requirement matrix,
and observing disturbances in [I�A]�1, the total requirement
matrix. The error in the element of the IO table is propagated to
the Leontief Inverse and eventually affects the impact values. In
the case of wind energy, another source of uncertainty comes from
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