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� We review models explaining the cost of 11 electricity supply technologies.
� The most prevalent model is a log-linear equation characterized by a learning rate.
� Reported learning rates for each technology vary considerably across studies.
� More detailed models are limited by data requirements and verification.
� Policy-relevant influences of learning curve uncertainties require systematic study.
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a b s t r a c t

A variety of mathematical models have been proposed to characterize and quantify the dependency of
electricity supply technology costs on various drivers of technological change. The most prevalent model
form, called a learning curve, or experience curve, is a log-linear equation relating the unit cost of a
technology to its cumulative installed capacity or electricity generated. This one-factor model is also the
most common method used to represent endogenous technical change in large-scale energy-economic
models that inform energy planning and policy analysis. A characteristic parameter is the “learning rate,”
defined as the fractional reduction in cost for each doubling of cumulative production or capacity. In this
paper, a literature review of the learning rates reported for 11 power generation technologies employing
an array of fossil fuels, nuclear, and renewable energy sources is presented. The review also includes
multi-factor models proposed for some energy technologies, especially two-factor models relating cost to
cumulative expenditures for research and development (R&D) as well as the cumulative installed ca-
pacity or electricity production of a technology. For all technologies studied, we found substantial
variability (as much as an order of magnitude) in reported learning rates across different studies. Such
variability is not readily explained by systematic differences in the time intervals, geographic regions,
choice of independent variable, or other parameters of each study. This uncertainty in learning rates,
together with other limitations of current learning curve formulations, suggests the need for much more
careful and systematic examination of the influence of how different factors and assumptions affect
policy-relevant outcomes related to the future choice and cost of electricity supply and other energy
technologies.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding how the costs of energy and energy supply
technologies change over time is of key importance for analysts
and decision-makers concerned with technology development,
the evolution of national and global energy systems, and the im-
plications of policy measures proposed to address global climate
change or other energy-related issues. Over the past several dec-
ades, the concept of a learning curve (or experience curve) has
been employed in the literature to relate historically observed
decreases in the cost of a technology to key factors affecting its
adoption and diffusion, such as its cumulative installed capacity or
units of output produced. Technology “learning rates” derived
from such models are now widely employed by researchers and
policy analysts to project future trends in the energy and en-
vironmental domains.

In this paper, we focus specifically on technologies for electric
power generation, as this sector accounts for a major portion of
primary energy consumption and greenhouse gas (GHG) emis-
sions globally (IEA, 2013a). We present the results of a literature
review of models that characterize technology learning across a
broad range of electric power generation options, including, pul-
verized coal (PC) plants with and without carbon capture and
sequestration (CCS); integrated gasification combined cycle (IGCC)
plants with and without CCS; natural gas combined cycle (NGCC)
plants with and without CCS; natural gas-fired combustion tur-
bines; dedicated biomass plants; nuclear plants; hydroelectric
plants; geothermal plants; onshore and offshore wind farms; and
solar photovoltaic (PV) power plants.

This paper builds upon and updates prior reviews of the
learning curve literature in peer-reviewed journal articles (e.g.,
McDonald and Schrattenholzer, 2001; Yeh and Rubin, 2012) and an
edited monograph focused on the energy sector with an extensive
treatment of electric power technologies and energy models
(Junginger et al., 2010). In extending this prior body of work, we
pull together into a single journal-length article the findings of
research about learning models for a broad set of energy tech-
nologies currently reported in a variety of sources. Thus, our main
objectives are to (1) review the current state of models used to
understand past cost trends for a broad range of electric power
generation technologies, (2) summarize and compare the quanti-
tative learning rates for different technologies, and their associated
uncertainty, as reported in the recent literature, (3) draw im-
plications of these findings for the use of learning curves in
technology studies and large-scale energy-economic models,
(4) critically assess the implications of using various types of
learning models for energy policy analysis and (5) suggest a
number of areas where additional research could be productive in

addressing some of the limitations identified in this review.
To begin, Section 2 briefly reviews the theory of technological

change and the principal model forms used to relate technology
costs to relevant factors. Section 3 then presents the results of our
literature review of learning rates applicable to the 11 electricity
supply technologies studied including estimates of their un-
certainties. This review focused on peer-reviewed journal articles
to help assure that the results we cite have been subject to a prior
degree of expert scrutiny and approval. Section 4 discusses the
policy implications of using learning curves or other specifications
of future technology costs in large-scale energy-economic models
used to inform policy planning and analysis. Finally, Section 5
summarizes the above discussions and identifies key research
needs to address major shortcomings identified in our literature
review.

2. Theoretical framework

A large literature on the theory of technological change and its
applications to energy system modeling underlies the discussion
of learning rates in this paper. Here we briefly review highlights of
that literature, including relevant aspects of our own past work,
before focusing more narrowly on the models most widely used to
estimate future technology costs.

Technology growth models originally treated technical change
exogenously, independent of other factors or variables (Solow,
1956). This effectively meant that technological change is largely
unresponsive to policy measures such as R&D spending, contrary
to other evidence (Cohen, 1995; Sinclair et al., 2000; Clarke et al.,
2008). An alternative formulation proposed by Romer (1986)
modeled technological change endogenously as a function of se-
lected variables—a formulation now adopted in much of the
technological change literature. Endogenous change models also
seek to understand the importance of cost reductions for tech-
nologies used in one industry, sector, or geographic region for the
same or similar technology used in other sectors or regions, that is,
understanding “spillover” effects. In all cases, however, there is
still considerable uncertainty in the ability of different model
formulations to represent induced technological change (Jungin-
ger et al., 2010; Yeh and Rubin, 2012).

Despite this complexity, by far the most common model used
in the energy literature to forecast changes in technology cost is
the “one-factor learning curve” (or “experience curve”). This
widely-used formulation is derived from empirical observations
across a variety of energy technologies that frequently indicate a
log-linear relationship between the unit cost of the technology
and its cumulative output (production) or installed capacity
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