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H I G H L I G H T S

� A data-driven approach has been shown to be effective at modeling the oil production.
� The Hubbert model could be discovered automatically from data.
� The peak of world oil production is predicted to appear in 2021.
� The decline rate after peak is half of the increase rate before peak.
� Oil production projected to decline 4% post-peak.
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a b s t r a c t

Numerous models have been proposed to forecast the future trends of oil production and almost all of
them are based on some predefined assumptions with various uncertainties. In this study, we propose a
novel data-driven approach that uses symbolic regression to model oil production. We validate our
approach on both synthetic and real data, and the results prove that symbolic regression could effectively
identify the true models beneath the oil production data and also make reliable predictions. Symbolic
regression indicates that world oil production will peak in 2021, which broadly agrees with other
techniques used by researchers. Our results also show that the rate of decline after the peak is almost half
the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These pre-
dictions are more optimistic than those in several other reports, and the smoother decline will provide
the world, especially the developing countries, with more time to orchestrate mitigation plans.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Oil is crucial for widespread transporting goods and people
which is a hallmark of our modern civilization; accounting for
31.4% of total primary energy consumption and more than 90% of
road-transport energy demand (IEA, 2013), as such it is important
to model oil production into the future (IEA, 2013; EIA, 2013).

The methodology behind the modeling of oil production plays
the core role in attempts to solve this problem, and among the
many areas of discussion on this topic, quantitative models, which
are usually built on mathematical formulae, are an important
branch to study. Quantitative models, which date back to the early
19th century, have been built for measuring oil exhaustion (Day,

1909). Since then, more variations and improvements have
emerged, which are usually classified into three approaches:
(1) curve-fitting models; (2) system simulation; and (3) economic
models (UKERC, 2009). The latter two approaches usually consider
many related factors that affect the oil production to improve the
models, such as oil price, demand, investment, etc., however, they
are much more complicated to realize than the first one due to
their reliance on a detailed description of the target area as well as
the need for collection of a large amount of data. This restricts the
applicability and effectiveness of the second and third approaches.
The curve-fitting approach is relatively easier to implement, which
makes it the widely accepted model to predict oil production
(UKERC, 2009).

Among the various curve-fitting approaches, the Hubbert
model is recognized as the most representative one. It was de-
veloped byHubbert (1956, 1982) and was successful in predicting
oil production in lower 48 states of the USA. After Campbell and
Laherrere's (1998) paper, Hubbert curves and the peak oil theory
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took off with many extensions being based on it or a similar bell-
shaped curve to predict future oil production (Szklo et al., 2007;
Wang et al., 2011). This branch could be further classified into two
classes: (1) symmetric models, like the Hubbert model and the
Gaussian model; and (2) asymmetric models, like the Gompertz
model. Each of these has a diverse impact on prediction perfor-
mance (Sorrell et al., 2010). There was a comprehensive study to
determine which model fitted best (Brandt, 2007) for 139 oil
producing regions that are sub-national, national, and multi-na-
tional in scale. This empirical study proved that there is no model
that is permanently superior to the others and it depends on a
human expert's experience or judgment to choose the best model
for a specific target area under study. Even if an appropriate model
is selected, there will still be some parameters to be estimated,
such as ultimately recoverable resources (URR) (Owen et al., 2010;
Hirsch, 2005; Chapman, 2014).

The above discussions call for a more reliable and flexible
method to model oil production to assist energy policy-making. In
this study, we propose a novel method that is based on an evo-
lutionary approach to symbolic regression. Symbolic regression
was developed based on a popular evolutionary algorithm, genetic
programming (Koza, 1992). There are various successful applica-
tions of symbolic regression and one of the representative works is
the discovery of natural physical laws from data, such as nonlinear
energy conservation laws and Newtonian force laws (Schmidt and
Lipson, 2009). Many other interesting applications have emerged
recently in different fields, including astronomy (Graham et al.,
2013), biology (Sahakyan and Vendruscolo, 2013), and medicine
(Yoshihara et al., 2013). We are inspired by the discovery of phy-
sical laws from data; accordingly, we attempt to find the under-
lying rules from oil production data. That is, we let the computer
search the data and automatically discover the law-like models.
The advantage is that it is not necessary to give assumptions or
predefine the possible structures of models, which reduces the
controversy and relieves the burden to build reliable models.

The purpose of our approach is to improve the curve-fitting
research. The previous curve-fitting approaches usually assume a
model and some parameters such as URR, which are not necessary
in our approach. There are many other related factors that affect
the oil production, and they could increase the precision of fore-
casting in some areas. However, they usually require a lot of data
to collect and may not be suitable for some other areas, especially
the larger regions, due to the lack of enough data. The curve-fitting
approach usually does not consider so many factors, and the dis-
cussion of integration of other related factors is beyond the scope
of this paper.

The rest of this paper is organized as follows. In Section 2, we
briefly introduce the technical background of symbolic regression.
In Section 3, we examine our approach on synthetic and real data
to validate its modeling ability and predictability, and then apply
our approach to predict the world oil production and analyze the
features of the coming peak. In Section 4, we give some more
discussions of our approach. In Section 5 we conclude the paper
and discuss some policy implications.

2. Method

Genetic programming (GP) (Koza, 1992) is one of the classic
evolutionary algorithms inspired by the Darwinian theory of
evolution and is a successful variant of genetic algorithms (GA)
(Holland, 1975). The evolutionary algorithms usually consists of
three fundamental elements:

1. A randomly generated population of individuals that represent
the candidate solutions.

2. Some genetic operators to evolve the individuals, of which the
crossover (exchanging part of two individuals) and mutation
(changing a small portion of one individual) are the common ones.

3. A fitness evaluation method to guide the direction of evolution,
where the individual with higher fitness values will have a higher
probability of surviving in the following evolution generations.

GP was designed originally to evolve the computer programs.
The typical representation of GP is a tree structure, which could be
evaluated in a recursive way, as shown in Fig. 1. There are gen-
erally two types of nodes: leaf nodes (or terminal nodes) and in-
ternal nodes (or functional nodes), where leaf nodes represent
terminal symbols, such as variables and constants and internal
nodes represent nonterminals, such as functions and operators.
The overall flowchart of GP is illustrated in Fig. 2, and the cross-
over and mutation operators are explained in Figs. 3 and 4.

Symbolic regression is to automatically search for mathema-
tical equations via GP from the high-dimensional space of a finite
set of input data samples without any a priori expert's domain
knowledge or pre-specified underlying regression structures like
linear regression or nonlinear regression. Because of this unique
advantage, symbolic regression has received more and more at-
tention in various fields and many successful applications have
emerged recently. Based on symbolic regression, Schmidt and
Lipson (2009) developed an algorithm automatically searching
motion-tracking data captured from various physical systems, and
without any prior knowledge about physics, the algorithm dis-
covered Hamiltonians, Lagrangians, and other laws of geometric
and momentum conservation. Vladislavleva et al. (2013) proposed
an approach for energy prediction based on weather data and
analyzed the important parameters as well as their correlation on
the energy output. Can and Heavey (2011) developed metamodels
to predict throughput rates in a common industrial system,
without any prior assumptions on the structure of the metamo-
dels. Kotanchek et al. (2010) detected outliers and extracted sig-
nificant features from the country data to identify records that are
systematically under- or over-predicted. Manson (2005) modeled
decision making in the context of human–environment relation-
ships, contributing to methodological innovations in multi-criteria
evaluation and modeling of coupled human–environment sys-
tems. Khu et al. (2001) applied symbolic regression to real-time
runoff forecasting for the Orgeval catchment in France. Yang et al.
(2009) searched for optimized ranking equations to rank associa-
tion rules by considering both objective and subjective informa-
tion between the rules and keywords.

The procedures for symbolic regression via genetic program-
ming are described in Algorithm 1, with a set of data samples

d t d t d t{( , ), ( , ), , ( , )}n n1 1 2 2= … , where one data sample
d i n( [1, ])i ∈ consists of m dimensional variables; i.e.,
d d d d{ , , , }i i i im1 1= … , and t i n( [1, ])i ∈ is the target variable of di.
The maximum number of generations of evolution is and the
output formula set is f f f{ , , , }p1 2= … , where f j p( [1, ])j ∈ is one
equation found by symbolic regression. The set of individuals in
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Fig. 1. A GP individual in tree structure.
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