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H I G H L I G H T S

� This paper investigates the long memory properties of the futures energy volatility.
� We estimate a variety of GARCH-class of models.
� The Adaptative-FIGARCH(1,d,1,k) model has been used to account for both long memory and breaks.
� 5 out of the 8 futures energy series are characterized by both long memory and structural breaks.
� The 3 other series are characterized by only long range dependence in volatility.
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a b s t r a c t

The main goal of this paper is to investigate whether the long memory behavior observed in many
volatility energy futures markets series is a spurious behavior or not. For this purpose, we employ a wide
variety of advanced volatility models that allow for long memory and/or structural changes: the GARCH
(1,1), the FIGARCH(1,d,1), the Adaptative-GARCH(1,1,k), and the Adaptative-FIGARCH(1,d,1,k) models. To
compare forecasting ability of these models, we use out-of-sample forecasting performance. Using the
crude oil, heating oil, gasoline and propane volatility futures energy time series with 1-month and
3-month maturities, we found that five out of the eight time series are characterized by both long
memory and structural breaks. For these series, dates of breaks coincide with some major economics and
financial events. For the three other time series, we found strong evidence of long memory in volatility.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling and forecasting volatility are of great importance
when pricing derivatives, calculating measures of risk, and hedging
against portfolio risk. The price of almost every derivative security is
affected by changes in volatility. Risk management models used by
financial institutions and required by regulators consider time-
varying volatility as a key input. Volatility is also an important
determinant of macroeconomic conditions. Changes in energy
prices are often considered to be key factors in understanding
fluctuations in stock prices, real GDP growth rates, inflation,
employment, and exchange rates (Hamilton, 1983, 2009, 2013;
Kilian, 2009; Wang et al., 2011; Wang and Wu, 2012; Arouri et al.,
2012; Ozdemir et al., 2013; Kang and Yoon, 2013; Creti et al., 2013).

Moreover, outlier and extreme events, such as the Gulf War and the
financial crisis, have an important impact on volatility dynamics
(Wang and Wu, 2012; Arouri et al., 2012). Therefore, determining
the true data generating process (DGP) of volatility dynamics is of
high importance for market participants, financial analysts and
policymakers. For instance, policymakers must seriously consider
the fluctuation of and trends in energy prices (i.e., crude oil and
heating oil), as they are both inputs into production and consumer
goods (Hamilton, 1983; Masih et al., 2011). Market participants and
financial analysts should understand the origins of energy shocks
because each shock may require specific portfolio adjustments
(Kilian and Park, 2009).

In the empirical finance literature, a growing number of studies
have analyzed modeling and forecasting volatility. Many empirical
studies have examined the volatility time series by supposing that
the DGP of volatility series is characterized by sudden changes in
the volatility (Hamilton and Susmel, 1994; Gray, 1996; Klassen,
2002; Marcucci, 2005; Baillie and Morana, 2009). Hamilton and
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Susmel (1994) and Susmel (2000) have developed the Markov
switching regime model with an ARCH(q) process under each
regime (SWARCH) model. Marcucci (2005) proposed the Regime-
Switching GARCH (MRS-GARCH) models, where the parameters
are allowed to switch between a low and a high volatility regime
as in Gray (1996) and Klassen (2002). Recently, Baillie and Morana
(2009) have introduced the so-called adaptative GARCH (A-
GARCH) model, which enables structural changes in the condi-
tional variance. In the A-GARCH model, the variance intercept
switches between regimes according to Gallant (1984)'s smooth
flexible functional form.

Recent studies suggested that shocks on volatility have long-
lasting effects. This behavior is known in the empirical finance
literature as long-range dependence behavior or long memory
behavior. Long memory in volatility occurs when the effects of
volatility shocks decrease slowly. This behavior is observed on the
autocorrelation function, which decays slowly to zero, or on the
spectral density, which diverges to infinity at a frequency near
zero. Long memory behavior in volatility has been observed in
several financial time series; see, for instance, Ding et al. (1993),
Dacorogna et al. (1993), Baillie et al. (1996), Breidt et al. (1998) and
Harvey (1998). In these cases, volatility can be modeled using a
fractionally integrated model, such as the Fractionally Integrated
GARCH (FIGARCH) model or the Fractionally Integrated Exponen-
tial GARCH (FIEGARCH) model. One of the most compelling
motivations regarding the importance of long memory is that it
implies long-run effects of shocks compared to conventional
macroeconomic approaches. Moreover, the evidence of long
memory in return is synonymous with the presence of non-
linear dependence between observations, which means that it is
possible to predict future returns based on historical data. This
latter result is of great importance, as it is in total contradiction to
the weak-form efficiency hypothesis of energy markets.

An important issue that arises when modeling the volatility of
futures energy prices using long memory processes is the fact that
various types of structural change models can produce a high
persistence of volatility (Charfeddine and Guegan, 2012; Baillie
and Morana, 2009; Beltratti and Morana, 2006). For instance, short
memory models with a changing regime in the mean or volatility
can generate behavior identical to the one derived from a long
memory process when looking at autocovariance function and
spectral density. This behavior has been noted by many authors
and has been identified in several processes such as the mean-
plus-noise model of Chen and Tiao (1990), the stochastic perma-
nent break model of Engel and Smith (1999), the sign model of
Granger and Terasvirta (1999) and the infrequent break model of
Gourieroux and Jasiak (2001). To the best of our knowledge, there
is no formal test that can differentiate between true and spurious
long memory in the theoretical and empirical literature. Thus,
discriminating between these two types of behavior remains a
challenging and important task from two perspectives. Regarding
economics, financial shocks are known to have a long-lasting
effect when the data generating process (DGP) is a true long
memory process. However, when the DGP is a model with a short
memory between breaks, the autocorrelations should theoretically
decline exponentially, and the impact of shocks is expected to die
out subsequently after a small number of observations. Regarding
statistics, inferences under a stationary long memory model are
notably different than those under a short memory model with
structural breaks. However, estimating a long memory parameter
without considering the presence of breaks in the data sets may
lead to a misspecification and hence to overestimating the true
parameter.

In this paper, our primary purpose is to examine the long
memory properties of the futures energy prices volatility series. In
particular, we investigate whether the observed long memory

behavior in the volatility futures energy is a true behavior or a
spurious behavior created by structural breaks. To this end, we
estimate different structural breaks and/or long memory processes
for each energy futures time series. For energy futures time series,
we use crude oil, gasoline, heating oil and propane in 1-month and
3-month maturities. Our paper differs from earlier studies on
modeling energy prices volatility in three ways. First, in addition
to the modified rescaled range statistic (R/S) of Lo (1991) and the
Gaussian Semiparametric (GSP) method of Robinson and Henry
(1999) largely used in the empirical literature, we employ the
detrended fluctuation analysis (DFA) method of Peng et al. (1994)
and the two-step feasible exact local whittle (2FELW) of Shimotsu
(2010). This approach provides additional information concerning
the robustness of long-memory inference on daily futures energy
price volatilities. Second, in contrast to earlier studies that rely on
testing for long-range dependence without considering structural
breaks, or only by estimating the long memory parameter “d” in
non-overlapping sub-samples where dates of breaks are exogen-
ously determined, in this paper, we estimate the long memory
parameter and the date of breaks simultaneously using the
Adaptative FIGARCH (A-FIGARCH) model proposed recently by
Baillie and Morana (2009). Third, we compare the GARCH(1,1),
A-GARCH(1,1,k), FIGARCH(1,d,1), and A-FIGARCH(1,d,1,k) models in
terms of their ability to describe the behavior of conditional
variance using out-of-sample forecast evaluations.

The paper is structured as follows. In Section 2, we provide a
review of the literature on the dynamics of the volatility of futures
energy markets. In Section 3, we describe tests of structural
changes in volatility, long memory estimation methods, GARCH-
class of models and the out-of-sample testing framework. In
Section 4, we present and discuss empirical results. Finally,
Section 5 presents a summary and policy implications.

2. Literature review

As noted earlier, determining the stochastic properties of the
volatility of energy prices is important when forecasting, hedging,
planning and making decisions regarding capital investment and
portfolio diversification. In recent years, there is a growing con-
sensus among researchers that the futures energy prices volatility
can be better described by nonlinear econometric models such as
long range dependence and structural breaks models (see for
instance Baillie et al., 2007; Elder and Serletis, 2008; Fernandez,
2010; Wang and Wu, 2012; Arouri et al., 2012; Ozdemir et al.,
2013; Kang and Yoon, 2013). Empirical evidence about the true
data generating process of the futures energy time series can be
classified into three major categories.

The first category of studies has examined the hypothesis that
shocks on the volatility of the futures energy contracts have long-
lasting effects. This behavior is known in the empirical finance
literature as long-range dependence behavior. For instance, Baillie
et al. (2007) have investigated the properties of long memory in
volatility of both daily and high frequency intraday futures returns
for six important commodities. They found that the volatility
processes are very well described by FIGARCH models, with
statistically significant long memory parameter estimates. They
suggest that long memory in volatility is a pervasive and consis-
tent feature of commodity returns and is not just being caused by
shocks or regime shifts to the underlying price processes. This
latter result is confirmed by that obtained by Cunado et al. (2010)
when investigating long range dependence behavior for several
energy futures markets and for different contracts maturity. They
found strong evidence of long memory in volatility. In contrast to
this evidence of the presence of a stationary long memory
behavior in futures energy contracts, Elder and Serletis (2008)
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