ARTICLE IN PRESS

Energy Policy • (••••) •••-•••

Contents lists available at SciVerse ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

H. Shahsavari Alavijeh^a, A. Kiyoumarsioskouei^b, M.H. Asheri^a, S. Naemi^a, H. Shahsavari Alavije^c, H. Basirat Tabrizi^{a,*}

^a Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

^b Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

^c Department of Engineering, Shahed University, Tehran, Iran

HIGHLIGHTS

• CO₂ and NO_x emissions of Iran natural gas fired power plants have been studied.

- CO₂ and NO_x emission factors are compared with EPA, EU and World Bank standards.
- Costs and benefit as economic functions are obtained according to capacity factor.
- Maximum economic profit is obtained for gas turbine and steam power plants.

• Investment in CO₂ reduction is recommended instead of investment in NO_x reduction.

ARTICLE INFO

Article history: Received 25 October 2011 Accepted 1 May 2013

Keywords: Power plants Emission factor Economic analysis

ABSTRACT

This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country's power plants where as efficient capacity factor close to one means that power plant works in much better condition.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, climate changes and people's health problems are known as the most serious environmental issues and one of the main sources of climate change is fossil fuel power plants. Reasonable estimation of greenhouse gas emissions is essential for developing an appropriate policy to better address the global warming and people's health problem.

* Corresponding author. Tel.: +982164543455; fax: +982166419736. *E-mail address:* hbasirat@aut.ac.ir (H. Basirat Tabrizi). Fossil fuel power plants are great consumers of fossil fuel resources and are among greatest industrial emission producers. Emissions from power plants pose a potentially large risk to human health and the environment (Lopez et al., 2005). Therefore, any attempt for optimizing power plant operation and the renovation of its facilities, including economic and environmental attitudes, will gain huge benefits in the long time. Further, socio-economic and environmental factors should be evaluated together in the selection of area for creating new thermal power plants (Say, 2006). Therefore, it could be concluded that power plant emissions such as CO₂ could be reduced with optimizing power plant operation and renovation of its facilities. Amount of CO₂ not only damages the environment and causes financial losses, but also damages ozone layer. The energy sector accounts for

Please cite this article as: Shahsavari Alavijeh, H., et al., Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants, Energy Policy (2013), http://dx.doi.org/10.1016/j.enpol.2013.05.001

^{*/}In this study "full load" means the nominal capacity that a specific power plant produces but "load" means the measured value of the working load in the experiment day (during 2008).

^{0301-4215/\$-}see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.enpol.2013.05.001

approximately 90% of the CO₂ emissions and 75% of the total greenhouse gas emissions in developed nations (Intergovernmental Panel on Climate Change IPCC, 2006). Capturing CO₂ from exhaust gas at thermal power generation systems (PGSs) is considered as an effective means of dramatically reducing CO₂ emissions into the atmosphere. Technologies of capturing CO₂ include pre-combustion, post combustion and oxy-combustion methods (Davison, 2007; Kanniche et al., 2010). The impact of capturing CO₂ from fossil fuel power plants on the emissions of NO_x and SO_x is favorable. Although, due to the reduced efficiency of power plants equipped with capturing technologies, the large-scale implementation of capturing carbon increases the emission levels of NO_v from the power sector, but some NO_x and SO_y can be removed during the CO₂ capture (Tzimas et al., 2007). Using the CO₂ capture repowering system, the unit cost of power is about 18.0% cheaper and the annual profit 6.68 times larger than that of the reference system. However, the depreciation year of the proposed system is estimated to be longer than that of the reference system (Pak et al., 2010).

The most efficient load of a newly established power plant is its nameplate capacity. As time elapses, efficiency and the load up on which the power plant has the highest efficiency reduces; therefore it proves most efficient if power plants work on the efficient load (and not the nameplate capacity factor). This study aims to find the ratio of efficient load to the nominal capacity. If power plants work on the efficient load which is addressed here, it will yield the most economic benefit. Prior to this study, authors have investigated CO_2 , CO, SO_2 and NO_x emission factors of Iran's fossil fuel fired power plants and have concluded that these power plants do not work on an efficient load (Alavije et al., 2010).

This research evaluates the amount of Iran's natural gas fired power plant emissions during 2008. The study is based on thirty two gas turbine and twenty steam power plants for estimation of CO₂ and NO_x emission factors. The nameplate capacity of the power plants ranges from 60 MW to 315 MW for steam power plants and 15-165 MW for gas turbine power plants. The total nominal and produced capacities of Iran's governmental power plants are about 46 GW and 42 GW, respectively. The overall nominal capacity of the gas turbine and steam power plants are 11,798.7 MW and 14,935 MW, respectively. The overall electricity produced in gas turbine and steam power plants are 9807 MW and 14,565.6 MW, respectively. Therefore, it can be concluded that total capacity factor of gas turbine and steam power plants are 83.1% and 97.5%, respectively. Natural gas consumption is 16,000-72,000 m³/h for steam power plants and 4900-45,418 m³/h for gas turbine power plants (Environment Protection Department of Niroo Research Institute (NRI), 2008). Further, the developed emission factors are compared with those for other group works. An economic analysis is preformed which prefers the optimum power plant operation based on parameters such as fuel consumption cost, generating electricity revenue, emission cost, power plant load etc. In addition, the EF¹ values of natural gas fired power plants are compared with the standards of EPA², EU³ and World Bank.

2. Background

2.1. Emission

The total power generation increased from 16,921 MW to 31,295 MW from 1993 to 2003 and it is expected to reach

71,675 MW by 2013 (Iran's Ministry of Energy, 2007). This indicates that the production capacity is doubled every decade, consequently increasing gas emission of power plants in 2003 for CO₂, SO₂, NO_x and PM₁₀ production was 24.5%, 22%, 11.2% and 4.5%, respectively. Based on the energy balance sheet reported in 2003 and according to World Bank and Iran environment protection organization the social costs of power plant pollution are about 59.5, 371.4 and 195 million dollars due to NO_x, SO₂ and CO₂ production, respectively. Social costs are calculated by multiplying the amount of pollutant by the environmental costs per unit of weight. These costs were adopted from Iran's Ministry of Energy's information bank (Iran's Ministry of Energy, 2008). Totally, the cost estimation is an annual amount of about 625.9 million dollars (Environment Protection Department of Niroo Research Institute (NRI), 2008). It has been shown that if the power plant composition remains the same, the CO₂ emission in 2025 will be 252 Mt and SO₂, NO_x and CO emissions will reach 72%, 119% and 126%, respectively (Mazandarani et al., 2011).

2.2. Energy resources

Lack of energy resources is one of the main universal issues in the field of energy policy and is true for Iran. Efficient utilization of the limited resources is one of the low cost procedures to tackle this problem. Working of power plants on the efficient load leads to the better economic exploitation of energy resources. The energy sector of Iran is dominated by oil and gas. Iran is one of OPEC⁴'s largest oil producers and holds 8.6% (12.3 billion tons) of the world's oil reserves as well as 17% (26.6 trillion m³) of its gas reserves. Oil production in 2000 amounted to 186.6 million tons that is 3.8 million barrels per day (Motlagh et al., 2004). Four countries located in the Middle East own about half of world's natural gas resources (Iran, Qatar, Saudi Arabia and United Arab Emirates). It is remarkable that developed countries have the most amount of gas production in the world. On the other hand, statistics show that gas consumption for heat generation and electricity have been growing to higher rates during recent years (since 1995). These increases are more considerable in Middle East and non-OECD⁵ Asia Pacific and illustrate that world's tendency for using natural gas as well as the natural gas consumption for power plant fuel is growing (Department of Resource, Energy and Tourism, Australian Government, 2010). Gas consumption is increasing because of its low emission factor (A'rmannsson et al., 2005).

Growth in use of natural gas is more sensible in Iran due to her great resources of natural gas. Iran has been expanding its urban natural gas distribution since 1980. The growth rate has accelerated in recent years (International Energy Agency, 2010).

Comparison between the energy intensities of Iran and a few developed and developing countries makes clear that Iran uses energy wastefully and identifies energy efficiency as an area where some real progress needs to be made. Meanwhile, USA and China, despite having more production industries, use 17% and 26% less than Iran (Motlagh et al., 2004).

3. Method

In order to calculate the emission factors, the CO_2 and NO_x concentration and the flow rate of flue gas were assessed by Testo 350 XL analyzer. The instrument was placed at the accessible location of the flue gas duct. Further measurements were taken

⁵ Organization for Economic Co-operation and Development.

Please cite this article as: Shahsavari Alavijeh, H., et al., Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants, Energy Policy (2013), http://dx.doi.org/10.1016/j.enpol.2013.05.001

¹ Emission Factor.

² Energy Protection Agency.

³ Euro Union.

⁴ Organization of Petroleum Exporting Countries.

Download English Version:

https://daneshyari.com/en/article/7404308

Download Persian Version:

https://daneshyari.com/article/7404308

Daneshyari.com