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c Policy makers should design demand response strategies to save electricity.
c Peak electricity demand is influenced by tails of probability distributions.
c Both the GSP and the GPD are a good fit to the data.
c Accurate assessment of level and frequency of extreme load forecasts is important.
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a b s t r a c t

A Generalized Pareto Distribution (GPD) is used to model extreme daily increases in peak electricity

demand. The model is fitted to years 2000–2011 recorded data for South Africa to make a comparative

analysis with the Generalized Pareto-type (GP-type) distribution. Peak electricity demand is influenced

by the tails of probability distributions as well as by means or averages. At times there is a need to

depart from the average thinking and exploit information provided by the extremes (tails). Empirical

results show that both the GP-type and the GPD are a good fit to the data. One of the main advantages

of the GP-type is the estimation of only one parameter. Modelling of extreme daily increases in peak

electricity demand helps in quantifying the amount of electricity which can be shifted from the grid to

off peak periods. One of the policy implications derived from this study is the need for day-time use

of electricity billing system similar to the one used in the cellular telephone/and fixed line-billing

technology. This will result in the shifting of electricity demand on the grid to off peak time slots as

users try to avoid high peak hour charges.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling of extreme daily increases in peak electricity demand
is very important for load forecasters in the electricity sector. Peak
electricity demand is an energy policy concern for all economies
throughout the world, causing blackouts and increasing the cost of
electricity for consumers (Strengers, 2012). This has resulted in
many economies in the designing of energy efficient and demand
side management strategies to either redistribute or reduce energy
demand during peak periods. We define daily increase in peak
electricity demand as the positive day-to-day change in daily peak
demand (DPD), where DPD is the maximum hourly demand in a
24-hour period. Extreme daily increase in peak electricity demand
is therefore positive day-to-day change above a sufficiently high
threshold. The demand for electricity forms the basis for power

system planning, power security and supply reliability (Ismail
et al., 2009). This involves finding the optimal day-to-day operation
of a power plant. It is therefore important to have an accurate
assessment of the level and frequency of future extreme day-to-
day increases in peak electricity demand. Peak electricity demand
is subject to a range of uncertainties, including population growth,
changing technology, economic conditions, prevailing weather
conditions as well as the general randomness in individual usage
(Hyndman and Fan, 2010).

Extreme value theory (EVT) is used in this paper to investigate
whether extreme daily increases such as the one experienced
in May 2007 in South Africa is truly an extreme low-probability
event or is one which will appear on a regular basis. The distri-
bution of extreme daily increases in peak electricity is modelled
using the Generalized Pareto Distribution (GPD). A comparative
analysis is then done using the Generalized Single Pareto (GSP)
distribution which has one parameter to estimate (Verster and
De Waal, 2011). Modelling of extreme peak electricity demand is
important for load forecasters and system planners for planning
and scheduling of likely maximum daily increases of peak
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electricity demand. Fitting a GPD to exceedances over a suffi-
ciently large threshold is discussed in literature. Castillo and Hadi
(1997) discussed the fitting of the GPD to a given set of data.
The estimation of the two parameters of the GPD which are
the shape and scale parameters is usually not easy. In their paper,
Castillo and Hadi (1997) proposed a method for estimating the
parameters and quantiles of the GPD. Their proposed method
worked well over a wide range of parameter values. Hosking and
Wallis (1987) used GPD in modelling annual maximum floods.
Recent work includes that of Verster and De Waal (2011) who
showed that the tail of a Generalized Burr-Gamma (GBG) dis-
tribution can be approximated by a GP-type distribution with
one parameter which is the extreme value index. For reviews
and references on fitting a GPD to exceedances over a sufficiently
large threshold see (Castillo and Hadi, 1997; Beirlant et al., 1999,
2004; Thompson et al., 2009; Bermudez et al., 2010; MacDonald
et al., 2011; Chikobvu et al., 2012; among others).

The rest of the paper is organized as follows. The GPD and GSP
distribution are discussed in Section 2. Bayes estimation of the
GPD and GSP distributions is discussed in Section 3. The data set
is described in Section 4. The empirical results are discussed in
Section 5. A detailed discussion of the significance of the empiri-
cal results is given in Section 6. The conclusion and policy
implications are discussed in Section 7.

2. EVT and modelling of peak electricity daily changes

2.1. Generalized Pareto distribution

A peaks over threshold (POT) distribution is considered to
model the observations above a sufficiently high threshold. The
POT distribution considered here is the GPD with two parameters
x, the shape parameter, also known as the Extreme Value Index
(EVI) and s, the scale parameter. Balkema and De Haan (1974)
and Pickands (1975) showed that the distribution function of
the excesses above a high threshold converges to a GPD as the
threshold tends to the right endpoint.

Let Y1,Y2, . . . ,Yn be a sequence of daily increases in peak
demand. The increase in peak demand is relative to the previous
day. In order to extract upper extremes from this sequence we
take the exceedances over a predetermined high threshold t. The
distribution function of the GPD is given in the following equation:
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If x40 then Wx,sðyÞ belongs to the heavy-tailed distributions
such as Pareto, Student t, Cauchy, loggamma and Frechet whose
tails decay like power functions. If x¼ 0 then Wx,sðyÞ belongs to
the Gumbel, normal, exponential, gamma and lognormal whose tails
decay exponentially. If xo0, Wx,sðyÞ belongs to the uniform and
beta distributions. The survival function of the GPD is given in
equation:
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2.2. Generalized single Pareto distribution

In Verster and De Waal (2011), it is given that above a reason-
ably high threshold, t, the tail of a Generalized Burr Gamma (GBG)
distribution can be approximated by a GP-type distribution.
The GP-type distribution, also a POT distribution, is an approxima-
tion of the GPD with the advantage of having only one parameter.
The distribution and survival functions of the GP-type distribution
which we also refer to as GSP distribution with shape parameter
Z (also known as the extreme value index (EVI)) are given as
follows:

WZðyÞ ¼ 1� 1þ
Z

1þtZ ðy�tÞ
� ��1=Z

, Za0, y4t ð3Þ

PðY4y9tÞ ¼ 1þ
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, Za0,y4t ð4Þ

3. Bayes estimation

3.1. Bayes estimation of the GPD

The two parameters are estimated jointly by considering a
Bayesian approach. The joint posterior distribution of x and s is
given as follows:

pðs,x9yÞp
YNt

i ¼ 1

1

s 1þ
xðyi�tÞ

s

� 	�1=x�1

pðs,xÞ ð5Þ

where pðs,xÞpð1=sÞe�x is the maximal data information (MDI)
prior (Zellner, 1977) and Nt is the number of observations above
the threshold.

The two parameters are estimated by simulating a large
number of s’s and x’s values from the posterior distribution and
taking the mean of the simulated values to obtain estimates.
To simulate a set of ðs,xÞ’s from the posterior we make use of
the Gibbs sampling method by simulating alternatively s from its
conditional density function given a fixed x. The parameter x is
then simulated from its conditional density given the selected s.
This process is repeated a large number of times. Future posterior
predictive tail probabilities of a future observation, Y0, can be
predicted through the following posterior predictive density:

PðY04y09y,tÞp
Z Z

pðx,s9yÞ 1þ
x
s
ðy0�tÞ

� ��1=x

ds dx,

�1oxo1 ð6Þ

Eq. (6) cannot be computed analytically, but can be approximated
easily by simulation. We simulate a large number of x’s and s’s
from the posterior distribution (Eq. (5)) which are then substi-
tuted into Eq. (6). The average over all the tail probabilities is then
used to estimate the posterior predictive tail probability.

3.2. Bayes estimation of the GSP distribution

The tail index parameter Z is estimated by considering a
Bayesian approach and obtaining the posterior distribution of Z.
The posterior distribution of Z is

pðZ9yÞp
YNt

i ¼ 1

1

1þZt 1þ
Zðyi�tÞ
1þZt

� 	�1=Z�1

pðZÞ ð7Þ

where pðZÞpe�Z=ð1þZtÞ is the MDI prior (Zellner, 1977) and Nt is
the number of observations above the threshold. The mode of
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