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a b s t r a c t

This paper considers the low-rank matrix completion problem, with a specific application
to forecasting in time series analysis. Briefly, the low-rank matrix completion problem
is the problem of imputing missing values of a matrix under a rank constraint. We
consider a matrix completion problem for Hankel matrices and a convex relaxation based
on the nuclear norm. Based on new theoretical results and a number of numerical and
real examples, we investigate the cases in which the proposed approach can work. Our
results highlight the importance of choosing a proper weighting scheme for the known
observations.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Dokumentov and Hyndman (2014) showed low-rank
representations and approximations to be very useful tools
for time series forecasting. One of the popular approaches
is singular spectrum analysis (SSA) forecasting (Golyan-
dina, Nekrutkin, & Zhigljavsky, 2001), which embeds the
time series into a Hankel matrix and uses a low-rank ap-
proximation and continuation to compute the next values
of a time series. SSA uses the fact that many time series can
be approximated well by a class of so-called time series
of finite rank. However, despite many successful exam-
ples (Hassani, Heravi, & Zhigljavsky, 2009; Khan & Poskitt,
2017; Papailias & Thomakos, 2017), SSA forecasting has a
number of disadvantages.

This paper develops a method based on Hankel matrix
completion.We follow the approach of Butcher and Gillard
(2017), who proposed that a time series be embedded into
a Hankel matrix, with the missing data (to be forecasted)
being stored in the bottom right-hand corner of thismatrix.
The method of Butcher and Gillard (2017) is based on
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minimising the nuclear norm, which provides a convex
relaxation of a low-rankmatrix completion problem that is
non-convex and NP-hard in general (see for example Fazel,
2002; Gillis & Glineur, 2011).

The nuclear norm (the sumof singular values) is a popu-
lar convex surrogate for the rank (Fazel, 2002), and is sim-
ilar to using the ℓ1-norm for sparse approximation (Rish
& Grabarnik, 2014). It has been shown to be a successful
tool for imputing the missing values of a matrix (see for
example Candes & Plan, 2010; Candès & Recht, 2009; Chen
& Chi, 2014; Fazel, 2002; Recht, Fazel, & Parrilo, 2010).
Nuclear norm relaxation has been a very popular tool for
spectral estimation (Chen & Chi, 2014), recommender sys-
tems (Fazel, 2002), and system identification (Blomberg,
2016; Liu & Vandenberghe, 2009; Verhaegen & Hansson,
2016). One advantage of the nuclear norm relaxation con-
sidered in this paper is the ability to build more complex
models to represent potentially more complex behaviors
in the observed time series.

An important question is when the convex relaxation
solves the original low-rankmatrix completion problem. A
lot of famous research has been conducted on this topic,
but most of the available research (Candes & Plan, 2010;
Candès & Recht, 2009; Chen & Chi, 2014; Fazel, 2002; Recht
et al., 2010) has assumed that the position of the missing
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entries in the matrix is random, and often that the known
entries are also random; in general, unstructured matrices
are considered. Thus, these results do not apply, due to
the special arrangement of missing data in our problem
and to the Hankel structure. Moreover, the case of struc-
tured matrices is much more challenging, as was noted
by Markovsky (2012a, b).

There are few available results for the completion of
Hankel matrices with a fixed pattern of missing values.
Dai and Pelckmans (2015) analysed a special case, square
real-valued Hankel matrices with nearly half of their val-
ues missing, and showed that the nuclear norm relaxation
gives the correct rank-one completion only when the em-
bedded time series can be written as a sum of decreasing
exponentials. Usevich and Comon (2016) then extended
this analysis to the rank-r case for the same pattern of
missing values.

This paper makes several contributions. First, like
Butcher and Gillard (2017), we consider the general case of
rectangular Hankel matrices with potentially fewer miss-
ing values. We show that, when there are only a few
missing values, the convex relaxation of the low-rank ma-
trix completion using the nuclear norm will give identical
solutions without using the convex relaxation for time
series with undamped or exponentially increasing peri-
odic components, and establish bounds on the number of
missing values. We also study the question of choosing
the optimal shape of the Hankel matrix (parameterized by
the so-called window length). Second, we suggest a new
(relative to Butcher & Gillard, 2017) formulation of the
low-rank matrix completion problem for Hankel matrices,
which allows the possibility of allocating different weights
to past observations. In particular, exponential weighting
is designed to overcome the problems related to the per-
formance of the nuclear norm for time series that can be
expressed as a sum of increasing exponentials.

Empirical comparisons show that, with the proper
choice of weights, our novel formulation performs well
relative to a number of classical techniques. For the nu-
merical examples in this paper, we use CVX, a MATLAB
package for specifying and solving convex programs (Grant
& Boyd, 2008,2014). The reproducible examples are hosted
at https://github.com/kdu/nucnorm-forecasting/.

This paper has the following structure. Section 2 for-
mally defines the problems to be considered. We start by
defining exact matrix completion, then consider an ap-
proximate version. This section also describes the settings
used throughout the paper. Some known theoretical re-
sults that must be stated are reviewed in Section 3. First,
the time series of finite rank are recalled and the solution
of the exactminimal rank completion is summarized. Next,
known results on time series of finite rank are recalled.
Section 4 contains the main results of the paper. First, we
give theoretical bounds formatrix completion in the case of
an arbitrary shape of thematrix and the number of missing
values. We check the tightness of our bounds through nu-
merical experiments. Second, we establish the connection
between exponential weighting and the preprocessing of
time series. Finally, the forecasting examples that involve
real and model time series and that demonstrate the ad-
vantages of the proposed methodology are provided in
Section 5.

2. Problem statement

2.1. Hankel matrices

For a vector f = (f1, . . . , fn) with n > 1 and a so-called
window length L, the L×(n−L+1)Hankelmatrix is defined
as

HL(f) =

⎛⎜⎜⎜⎜⎝
f1 f2 · · · fn−L+1

f2 f3 . .
.

fn−L+2

... . .
.

. .
. ...

fL fL+1 · · · fn

⎞⎟⎟⎟⎟⎠ .

In what follows, we are going to pose the problem of
forecasting a given time series as the low-rank matrix
completion of a Hankel matrix. Formally, let

p = (p1, p2, . . . , pn+m) (1)

be a vector of length (n + m), withm ≥ 0. In what follows,
m will be the number of observations to be forecast, and
n will be the length of the time series that we wish to
forecast. We use the notation p(1:n) = (p1, p2, . . . , pn) for
the first n elements of p. Next, let L and K be integers such
that L + K − 1 = m + n. Then, the matrix structure S(p)
(parameterized by p) that we consider is

S(p) = HL(p)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 · · · · · · · · · pK

p2 p3 · · · . .
.

· · ·
...

... · · · . .
.

. .
.

· · · pn
... . .

.
. .

.
. .

.
· · · pn+1

... . .
.

. .
.

. .
.

. .
. ...

pL · · · pn pn+1 · · · pn+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

In Eq. (2), the grey-shaded values are ‘‘known’’ and the
others are ‘‘missing’’.

The Hankel matrix structure belongs to the class of
affine matrix structures (Markovsky, 2012b, Section 3.3)
having the form:

S(p) = S0 +

(n+m)∑
i=1

piSi, (3)

where Si, i ∈ {0, 1, . . . , (n+m)}, are given linearly indepen-
dent basismatrices, and in particular, for theHankelmatrix
structure in Eq. (2), the basis matrices in Eq. (3) are given
as S0 = 0,

S1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , S2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 · · · 0 0

1 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , . . . ,

Sn+m−1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 1
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠ , Sn+m =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎠ .

https://github.com/kdu/nucnorm-forecasting/


Download English Version:

https://daneshyari.com/en/article/7408087

Download Persian Version:

https://daneshyari.com/article/7408087

Daneshyari.com

https://daneshyari.com/en/article/7408087
https://daneshyari.com/article/7408087
https://daneshyari.com

