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a b s t r a c t

This paper considers the problem of forecasting realized variance measures. These mea-
sures are highly persistent estimates of the underlying integrated variance, but are also
noisy. Bollerslev, Patton and Quaedvlieg (2016), Journal of Econometrics 192(1), 1–18
exploited this so as to extend the commonly used heterogeneous autoregressive (HAR) by
letting the model parameters vary over time depending on the estimated measurement
error variances. We propose an alternative specification that allows the autoregressive
parameters of HAR models to be driven by a latent Gaussian autoregressive process that
may also depend on the estimatedmeasurement error variance. Themodel parameters are
estimated bymaximum likelihood using the Kalman filter. Our empirical analysis considers
the realized variances of 40 stocks from the S&P 500. Our model based on log variances
shows the best overall performance and generates superior forecasts both in terms of a
range of different loss functions and for various subsamples of the forecasting period.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Since accurate forecasts of asset volatility are crucial for
option pricing, portfolio allocation and risk management,
research has been investigating volatilitymodeling for over
thirty years. The early models were the observation-driven
class of GARCH models (Bollerslev, 1986; Engle, 1982) and
the parameter driven class of stochastic volatility models
(Taylor, 1982, 1986), both of which are typically applied
to daily or weekly data. The increasing availability of high
frequency data offers an alternative approach to estimat-
ing and forecasting the latent volatility process. Models
based on lower frequency returns have (partially) lost their
appeal, since they are not able to exploit the information
available in the data fully.

In order tomake intraday data applicable for estimating
the true integrated variance (IV), Andersen and Bollerslev
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(1998) suggested estimating the asset volatility as the sum
of squared intraday returns. The resulting realized variance
(RV) is a consistent estimator for the IV as the sampling
frequency goes to zero. The asymptotic theory for the re-
alized volatility measure was derived by Barndorff-Nielsen
and Shephard (2002). More sophisticated realized mea-
sures for estimating the integrated variance in the presence
of jumps, microstructure noise or overnight returns have
also been suggested in the literature. Prominent examples
include the jump-robust bipower-variation of Barndorff-
Nielsen and Shephard (2004), the subsampled realized
variance of Zhang,Mykland, and Aït-Sahalia (2005) and the
realized kernel of Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2008). Nevertheless, Liu, Patton, and Sheppard
(2015) showed that the standard RV estimator based on
5-min returns is difficult to beat, and it is still applied
commonly in many applications.

The typical approach to modeling and forecasting the
volatility is to treat realized variance measures as the true
variance and apply reduced form econometric models. RV
measures have been shown to be characterized by strong
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persistence, which must be taken into account when spec-
ifying an appropriate model. Andersen, Bollerslev, Diebold,
and Labys (2003) propose that this persistence be mod-
eled directly as a fractionally integrated process. Since
the estimation of ARFIMA processes is cumbersome, the
cascade model of Corsi (2009) has become the workhorse
for modeling the long-memory of realized measures. The
so-called heterogeneous autoregressive (HAR) model gen-
erates the persistence as the sum of three autoregressive
components that reflect the investment horizons of dif-
ferent types of investors, namely the daily, weekly and
monthly horizons. Since the HAR can be written as a re-
stricted AR(20) model, parameter estimation using ordi-
nary least squares is straightforward. Variance forecasts
based on high frequency measures are superior to those
based on GARCH or SV models fitted for daily returns, as
was shown by Engle (2002) and Koopman, Jungbacker,
and Hol (2005), for example. Furthermore, augmenting
GARCH and SV models with RV measures based on high
frequency data leads to improvements in both model fit
and forecasting performance; see for example Engle and
Gallo (2006), Hansen and Lunde (2012) and Shephard and
Sheppard (2010) for observation-driven models and Do-
brev and Szerszen (2010), Koopman and Scharth (2013)
and Takahashi, Omori, and Watanabe (2009) for extended
stochastic volatility models.

In addition to longmemory, RVmeasures have a second
feature that is relevant for the modeling and forecasting of
volatilities that has mostly been neglected in the literature
until recently, namely that the realized variance measures
the integrated variance with an error as long as the sam-
pling frequency is nonzero. Relying on the asymptotic dis-
tribution theory of Barndorff-Nielsen and Shephard (2002),
Bollerslev, Patton, and Quaedvlieg (2016a) show how this
heteroscedastic error translates into an attenuation bias,
with the OLS estimate being attenuated with the average
value of the measurement error variance. This implies that
constant AR parameters are not optimal for forecasting.
Bollerslev et al. suggest allowing for time-varying param-
eters in the HAR model. The time variation is driven by
the variance of the measurement error of the realized vari-
ance, estimated by the realized quarticity, which results
in forecasts that are superior to those of the basic HAR
model. Their empirical results show that their resulting
HARQ model also has a better forecasting performance
than alternative HAR-type models, such as the HAR with
jumps, the continuous HAR of Andersen, Bollerslev, and
Diebold (2007) and the semivariance HAR of Patton and
Sheppard (2015). Since the approach of Bollerslev et al.
(2016a) models the HAR coefficients as a function of the
realized quarticity, in principle the same approach can also
be implemented for different variations of HAR models.
Furthermore, the authors demonstrate that their approach
is robust to the choice of the realized variance and quartic-
ity estimators.

This paper’s contribution is to propose an alternative
model for forecasting realized volatility measures that ex-
ploits the potential presence of measurement errors. Our
model is also based on the HAR model, but the first-order
autoregressive coefficient is specified to be a latent Gaus-
sian AR(1) process. The intuition behind this model is as

follows: in the situation of heteroscedastic measurement
errors, optimal forecasts are based on models with time-
varying parameters. Since the realized quarticity is only a
noisy measure of the variance of the measurement error,
we propose to approximate the dynamics of the HARQ
model by assuming latent AR(1) coefficients as a more
robust alternative. The model parameters are estimated
by maximum likelihood using a standard Kalman filter.
Even though this basic specification does not exploit the
realized quarticity as an estimate of themeasurement error
variance, it is still able to produce forecasts that are su-
perior to those generated by the HAR and HARQ models.
As an extension, we consider models that combine the
state space specification with the idea of Bollerslev et al.
(2016a). First, we augment the state equation for the time-
varying parameter with a realized quarticity. A variant of
this extension contains an indicator such that the realized
quarticity is effective onlywhen it exceeds the 99%quantile
of its in-sample values. Thus, themodel uses this additional
information only when the measurement error variance is
exceptionally large. Second, we study a model that com-
bines the time-varying parameters of the HARQ model and
our state space model. Furthermore, we consider the HAR
model in terms of the natural logarithm in both the basic
and state space forms, an approach that results in the most
promising empirical results.

In our empirical application, we use a large dataset
of 40 stocks from the S&P 500 index over a period of
15 years. We compare the in-sample fits and forecasting
performances of our models for realized variances based
on 5-min returns. Furthermore, we consider subsamples
of the forecasting period covering periods of high and low
volatility. Our state space model based on log volatilities
shows the best performance of all models compared, and
consistently outperforms the HARQ models for forecasting
the volatility.

The remainder of the paper is structured as follows.
Section 2 discusses the theoretical framework, reviews
existing approaches and introduces our model. Section 3
compares the competingmodels in termsof bothmodel fits
and forecasting performances, and Section 4 concludes.

2. Methodology

2.1. Setup and existing approaches

Consider an asset whose price process Pt is given by the
stochastic differential equation

d log(Pt ) = µtdt + σtdWt , (1)

where µt denotes the drift, σt the instantaneous volatility
and Wt a standard Brownian motion. The integrated vari-
ance for day t is then defined as

IVt =

∫ t

t−1
σ 2
s ds. (2)

Let rt,i = log(Pt−1+i∆)− log(Pt−1+(i−1)∆) be the ith intraday
return over a period of length∆ and assume thatM = 1/∆
intraday returns are available. A consistent estimator for
the integrated variance as∆ → 0, assuming that no jumps
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