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1. Introduction

I thank the discussants for their thoughtful analyses and
numerous constructive suggestions. Their ideas and clar-
ifications will help advance empirical modelling practice.
Professor Proietti elegantly summarises my paper in his
introduction, and Professor Perez-Quiros helpfully clarifies
the alternative approaches in my paper by ‘walking the
reader’ through the various stages of macroeconomic fore-
casting, noting the prevalence of both theory-driven small
dynamic factor models, (see e.g., Stock and Watson, 2002),
and data-driven specifications in large scale models as in
Forni, Hallin, Lippi and Reichlin (2000).

Building on an existing body of research reviewed in
Hendry and Doornik (2014), the aim of my paper was to
draw together at a general level how to decide between
approaches, then interested readers could consultmore ex-
tensive explanations for whatever aspects mattered most
to them. There are a number of publications concerning
the details, withMonte Carlo simulation studies and theory
analyses, albeit that many more remain to be undertaken,
as well as applications to macroeconomics and a diverse
range of fields including dendrochronology, volcanology
and climatology.

To respond to the issues the discussants raised, Sec-
tion 2 considers the different roles of strategy and tactics in
model selection; Section 3 illustrates the combined theory-
evidence approach when retaining a theory that transpires
not to be a good guide to the finally selected model; and
Section 4 briefly turns to the role of forecasting in model
selection.

2. Strategy and tactics in model selection

Strategy and tactics both matter in model selection,
howsoever that task is undertaken. The former was the
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focus of my paper, and even the choice of model selec-
tion algorithms was treated as part of tactics, so was not
discussed at any length. The strategy is one of seeking to
nest the local data generation process in a general starting
model that retains available theory insights, and includes
in an orthogonal form alternatives likely to be relevant
in a wide-sense non-stationary world, then selects over
the latter by multi-path block searches to discover what
additional features matter, thereby evaluating the theory
specification. Better tactics will undoubtedly evolve over
time, and have done so already: compare model selection
approaches before and after the introduction of indicator
saturation for finding breaks.

Indicator saturation allows the design of indicators to
match ‘likely’ break forms, providing a useful flexibility,
as in impulse-indicator saturation (IIS) for outliers, step-
indicator saturation (SIS) for location shifts, a ν shape for
the impacts on temperature of volcanic eruptions as in
Pretis, Schneider, Smerdon and Hendry (2016), etc. Based
on the results in Hendry and Krolzig (2005), collinearity
is less problematic for SIS than it looked at first sight,
encouraging us to investigate the properties of trend-
indicator saturation.Moreover, the uncertainty around SIS-
determined break dates can be estimated, as in Hendry and
Pretis (2016), as can uncertainty bands for the trajectory of
the mean: see Pretis (2015).

Although we have not yet tackled selecting shifts in
secondmoments, that remains on the research agenda, and
model selection of non-linearities goes some way towards
that aim. Basis functions for approximating non-linearity
are again an aspect of tactics, where future improvements
are highly likely, and Professor Proietti’s proposal of using
B-splines for both shifts and non-linearity points a way
ahead.

What Ericsson (2017) calls multiple-indicator satura-
tion (MIS) – where every regressor is interacted with a
saturating set of step indicators, so for k regressors and T
observations, there are k × T candidate variables – now
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enables the detection of changes in the parameters of re-
gressors. Kitov and Tabor (unpublished) demonstrated the
success of this approach, despite the high dimensionality
of the set of candidate variables. To understand intuitively
how SIS or MIS are able to detect location shifts or parame-
ter changes, consider knowing where a single (moderately
large magnitude) shift occurred, and splitting your data
into sub-samples before and after that point. Then you
would rightly be surprised if fitting your correctly specified
model of the data generation process (DGP) separately to
the different sub-samples did not deliver appropriately
different estimates of their DGP parameters. Choosing that
split by SIS or MIS will add variability from particular error
draws around the break point, which may offset the ap-
parent shift date temporarily by making it appear slightly
before or after the actual occurrence, but the correct indi-
cator, or one close to it, will accomplish almost the same
task as knowing the timing, so will be the likely selection.

A surprising finding from our research is that model
selection, appropriately conducted in a setting where the
general unrestrictedmodel (GUM) is sufficientlywell spec-
ified to nest the DGP, is almost as good as selecting from
that DGP at the same significance level. Of course, nesting
the DGP, or the local DGP, is unlikely and the entailed
LDGP may be a poor approximation to the actual DGP.
Moreover, GUMs may be underspecified in many possible
ways. Nevertheless, Castle, Doornik, and Hendry (2011)
show in simulations that the costs from estimating theDGP
can exceed those from selecting from an underspecified
GUM, as measured by the RMSEs of coefficient estimates
relative to the DGP parameters. Castle and Hendry (2014)
also investigate the consequences for automatic model
selection facing shifts when using indicator saturation, re-
inforcing the advantages of seeking to include all likely
substantively-relevant variables.

3. Is it problematic to retain a poor theory?

An underspecified set of variables is most likely to arise
when only a theory model is specified and estimated,
eschewing the advice in the paper to retain that theory
while searching over a much larger set of candidates. To
illustrate the combined approach in that setting, I return to
the Davidson, Hendry, Srba and Yeo (1978) (DHSY) study
on quarterly UK data for constant price consumers’ ex-
penditure, Ct and real personal disposable income, It , over
1958(2)–1976(2). Starting from the simplest version of the
permanent income hypothesis (PIH) current at the time of
their study, namely Ct = β0 + β1It + β2Ct−1 + et , with
added seasonal dummies, Si, (equation (12) in DHSY), had
Autometrics been available, could DHSY have found their
model in an afternoon rather than several years, despite
the initial theory being a poor guide to their finally selected
model?

Re-estimating DHSY’s PIH equation, but in a log-linear
specification over the full sample yielded:

ct = 0.59
(0.07)

ct−1 + 0.31
(0.054)

it +0.87
(0.14)

− 0.12
(0.007)

S1,t − 0.01
(0.005)

S2,t − 0.03
(0.003)

S3,t (1)

σ̂ = 1.0% R2
= 0.995 Far(5, 66) = 9.68∗∗

Farch(4, 69) = 2.79∗

χ2
nd(2) = 5.14 Fhet(7, 69) = 3.97∗∗ Freset(2, 69) = 0.57

where estimated coefficient standard errors are shown in
parentheses below estimated coefficients, σ̂ is the resid-
ual standard deviation, R2 is the coefficient of multiple
correlation, Far is a test for residual autocorrelation (see
Godfrey, 1978), Farch tests for autoregressive conditional
heteroskedasticity (see Engle, 1982), Fhet is a test for resid-
ual heteroskedasticity (seeWhite, 1980), χ2

nd(2) is a test for
non-Normality (see Doornik and Hansen, 2008), and Freset
is the reset test (see Ramsey, 1969). Thus, tests for residual
autocorrelation, ARCHandheteroskedasticity all reject: see
Fig. 2(a) for a graph of the resulting residuals.

The main result is the failure of that simple theory to
characterize the evidence, so evaluation is accomplished,
but there is no useful guidance on how to proceed towards
a better formulation. Recipes for patching autocorrelation,
heteroskedasticity, etc., do not take into account that re-
jection on such tests can arise from many failures of the
assumptions needed for congruence, not necessarily the
alternative hypothesis against which the test was designed
to have power: see Mizon (1995) and Spanos (2017).

The DHSY data on ct , it shown in Fig. 1(a) suggests that
seasonal lagsmightmatter (here 5 lags), and also including
inflation, ∆4pt and its lag, and their tax dummy, ∆4Dt ,
creates the GUM. The continuous variables were orthog-
onalized against ct−1 and it , denoted˜. Next, this GUM
was estimated to check that the coefficient estimates of the
retained variables in (1) were unaffected, as (2) confirms,
where bold denotes coefficients of added variables that are
individually significant at 1%.

ct = 0.59
(0.04)

ct−1 + 0.31
(0.03)

it + 0.88
(0.09)

− 0.12
(0.004)

S1,t − 0.01
(0.003)

S2,t − 0.03
(0.002)

S3,t

+ 0.007
(0.002)

∆4Dt −0.04
(0.09)

c̃t−2 + 0.05
(0.09)

c̃t−3

+ 0.73
(0.10)

c̃t−4 − 0.02
(0.12)

c̃t−5 + 0.16
(0.06)

ĩt−1

− 0.031
(0.05)

ĩt−2 + 0.04
(0.05)̃

it−3 − 0.10
(0.05)

ĩt−4

− 0.20
(0.06)

ĩt−5 − 0.33
(0.08)

∆̃4pt + 0.19
(0.09)

∆̃4pt−1

σ̂ = 0.58% R2
= 0.998

Far(5, 46) = 1.56 Farch(4, 61) = 2.98∗ (2)
χ2
nd(2) = 0.08 Fhet(31, 37) = 1.47
Freset(2, 49) = 4.92∗ Fadd(12, 51) = 13.1∗∗.
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