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a b s t r a c t

Temperature plays a key role in driving the electricity demand. We adopt the ‘‘recency
effect’’, a term drawn from psychology, to represent the fact that the electricity demand
is affected by the temperatures of the preceding hours. In the load forecasting literature,
the temperature variables are often constructed in the form of lagged hourly temperatures
and moving average temperatures. In the past, computing power has limited the amount
of temperature variables that can be used in a load forecasting model. In this paper, we
present a comprehensive study to model the recency effect using a big data approach. We
take advantage of modern computing power to answer a fundamental question: howmany
lagged hourly temperatures and/or moving average temperatures are needed in a regression
model in order to capture the recency effect fully without compromising the forecasting
accuracy? Using a case study based on data from the load forecasting track of the Global
Energy Forecasting Competition 2012, we first demonstrate that a model with the recency
effect outperforms its counterpart (a.k.a. Tao’s Vanilla BenchmarkModel) by 18% to 21% for
forecasting the load series at the top (aggregated) level. We then model the recency effect
in order to customize load forecastingmodels at the bottom level of a geographic hierarchy,
again showing a superiority over the benchmark model of 12% to 15% on average. Finally,
we discuss four different implementations of the recency effect modeling by hour of a day.
In addition, this paper also presents two interesting findings: 1) the naive models are not
useful for benchmark purposes in load forecasting at aggregated level due to their lack
of accuracy; and 2) slicing the data into 24 pieces to develop one model for each hour is
not necessarily better than building one interaction regression model using all 24 hours
together.

© 2016 Published by Elsevier B.V. on behalf of International Institute of Forecasters.

1. Introduction

At the inception of electric power systems, lighting was
the only end use of electricity, meaning that the electricity
demand was driven primarily by calendar variables.
As more and more electricity-powered appliances were
invented, the end use became diversified. The increasing
penetration of electrical air conditioning systems made
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the role of weather more and more important in driving
the electricity demand. Ever since the 1940s, people have
realized that the electric load depends strongly on the
weather (Dryar, 1944).

In the pre-PC (personal computer) era, utility planners
and operators created lookup tables and charts, based
on historical data and past experience, for capturing the
relationship between the load and weather variables such
as temperature and humidity. They then forecasted the
load using these charts and tables, togetherwith rulers and
intuitions (Hong, 2014).

http://dx.doi.org/10.1016/j.ijforecast.2015.09.006
0169-2070/© 2016 Published by Elsevier B.V. on behalf of International Institute of Forecasters.

http://dx.doi.org/10.1016/j.ijforecast.2015.09.006
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2015.09.006&domain=pdf
mailto:hongtao01@gmail.com
http://dx.doi.org/10.1016/j.ijforecast.2015.09.006


586 P. Wang et al. / International Journal of Forecasting 32 (2016) 585–597

When people started using computers for load forecast-
ing in 1980s, the computing power was very limited. Quite
often, the model building procedures for selecting vari-
ables and estimating parameters had to be conducted of-
fline, meaning that the computer was performing online
calculations of the load forecast based on the new data and
previously calculated variables and parameters (Gross &
Galiana, 1987). The offline model building scheme meant
that the model(s) could not be updated in real time to re-
flect the most recent status of the power system. As a con-
sequence, the forecasting accuracy was more or less com-
promised.

The technological advancement through the late 1990s
quickly eliminated the need for offline computation for
many load forecasting techniques. The benefits of the
increase in computing capability also meant that people
started to apply some more computationally intensive
techniques such as artificial neural networks (Hippert,
Pedreira, & Souza, 2001) and autoregressive integrated
moving average models (Weron, 2006) to load forecasting.
At the same time, people also started using large numbers
of variables in load forecasting models (Hippert et al.,
2001).

In psychology, the recency effect refers to the fact that
human beings tend to remember the most recent items.
The power grid is similar, in that its demand tends to be
affected significantly by the recent temperatures. Hong
(2010) was the first to adopt this term for illustrating part
of a systematic load forecasting methodology, which used
lagged temperatures to enhance the load forecasting
accuracy of a benchmark model. Since then, this term
‘‘recency effect’’ has been accepted widely in the US util-
ity industry, and has become part of a commercial soft-
ware package (SAS R⃝ Energy Forecasting) that is currently
being used by many power companies worldwide. Note
that many papers in the load forecasting literature have
reported the use of lagged temperatures. Papalexopoulos
and Hesterberg (1990) used lagged temperatures to cal-
culate lagged heating and cooling degree days for regres-
sion models. One winning team (Ben Taieb & Hyndman,
2014) of the Global Energy Forecasting Competition 2012
(GEFCom2012) used lagged hourly temperature and aver-
age daily temperature variables in the competition. An-
other winning team of GEFCom2012 (Nedellec, Cugliari, &
Goude, 2014) used exponentially smoothed temperature
variables. Nevertheless, there has never been an in-depth
study of differentmodel sizes, to investigate whether large
numbers of lagged and average temperature variables can
help to improve the forecast accuracy.

Despite the big improvement on the computation side,
model building can still take significant amount of time if
one wants to test many variables. Indeed, at times people
still have to juggle the tradeoff between the frequency
of model updates and the sufficiency of the variables.
As was discussed by Hong (2010), for example, lagged
temperature variables were limited to the past three hours
of temperatures due to computational constraints. The
limitation of computing power constraints was also an
issue in earlier decades, as was discussed by Gross and
Galiana (1987).

The methodology presented in this paper is a continua-
tion and extension of thework of Hong (2010).We attempt

to take advantage of modern computing power in order to
answer a fundamental question:

How many lagged hourly temperatures and/or daily mov-
ing average temperatures are needed in a regression model so
as to capture the recency effect fully without compromising
the forecasting accuracy?

Note that this paper does not explore exponentially
weighted temperature variables, primarily in order to
avoid discussing algorithms for fine-tuning the exponen-
tial weights. For instance, one heuristic method for select-
ing the base for the exponential weights was discussed
by Hong (2010). Other notable discussions of exponen-
tial smoothing for electric load forecasting are provided by
Taylor andMcSharry (2007) andWeron (2006). The lagged
temperatures and moving average temperatures covered
in this paper can be regarded as a typical representation of
‘‘recency’’, in the sense that we assign a weight of one to
each observation in the moving window and a weight of
zero to observations outside the moving window. Never-
theless, the proposed framework does not exclude the use
of exponentially weighted temperatures.

Following Hong, Wang, and White (2015), we develop
a case study based on the load forecasting data from GEF-
Com2012 published by Hong, Pinson, and Fan (2014a).
There are two big-data aspects of this paper: (1) we cus-
tomize the model for each zone of a geographic hierarchy
and each hour of the day; and (2) we take advantage of
modern computing power to develop large load forecast-
ing models with thousands of variables. Section 4.2 pro-
vides further discussion about big data in load forecasting.

This paper makes the following significant contribu-
tions to the load forecasting literature: (1) this is the first
comprehensive study on themodeling of the recency effect
without computational constraints; (2) this is the first time
that the recency effect has been applied to hierarchical load
forecasting, in the context of both geographical and tempo-
ral hierarchies, where the recency effect is being modeled
in a customized fashion for each zone and each hour of a
day; and (3) publicly available data are used to conduct
the case study, so that future researchers can reproduce
our results.

2. Background

2.1. Data description

One of the objectives of GEFCom2012 was to establish
a benchmarking data pool to make it easy for researchers
in the energy forecasting community to compare models.
In this paper, we use the data from the hierarchical load
forecasting track of GEFCom2012, which includes 4.5 years
of hourly load and temperature across 21 zones (Zi, i =

1, 2, . . .) of a US utility, of which Z21 was the sum of the
first 20 zones (Hong, Pinson et al., 2014a). We use the first
4 years of load and temperature data in this paper.

As per the case study by Hong et al. (2015), we are
conducting out-of-sample tests instead of selectingmodels
based on in-sample fits. Here, we slice the data to three
pieces, the first two years (2004–2005) for training (or in-
sample fit, for parameter estimation), the next year (2006)
for validation (or post-sample fit, for model selection), and
the last full calendar year (2007) for testing (or out-of-
sample testing, for a summary of error statistics). The four
years of Z21 load data are shown in Fig. 1.
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