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a b s t r a c t

Massive increases in computing power and new database architectures allow data to be
stored and processed at finer and finer granularities, yielding count data time series with
lower and lower counts. These series can no longer be dealt with using the approximative
methods that are appropriate for continuous probability distributions. In addition, it is not
sufficient to calculate point forecasts alone: we need to forecast entire (discrete) predictive
distributions, particularly for supply chain forecasting and inventory control, but also for
other planning processes. However, tools that are suitable for evaluating the quality of
discrete predictive distributions are not commonly used in sales forecasting. We explore
classical point forecast accuracy measures, explain why measures such as MAD, MASE
and wMAPE are inherently unsuitable for count data, and use the randomized Probability
Integral Transform (PIT) and proper scoring rules to compare the performances of multiple
causal and noncausal forecasting models on two datasets of daily retail sales.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Count data are integer-valued time series. Count data
are especially important for supply chain forecasting,
where most products are sold in units. A sufficiently
fine granularity along any of the typical dimensions in a
demand hierarchy (location, product or time) turns count
data into intermittent demand, i.e., data that exhibit ‘‘many’’
zeros. For instance,most of the demand series that a typical
supermarket faces are intermittent at a store × SKU × day
level, though of course the series become non-intermittent
with aggregation along any dimension.

High-volume count data, e.g., sufficiently highly aggre-
gated data, can and usually will be forecasted using meth-
ods that, strictly speaking, are only valid for continuous
data, since the relative error between the underlying count
data and the continuous approximation will become small

E-mail address: Stephan.Kolassa@sap.com.

with higher volumes, and many statistical theorems rely-
ing on large-sample theory, such as the Central Limit The-
orem, can be applied.

However, in recent years the trend has been towards
‘‘Big Data’’, i.e., the collection and processing of more and
more data. Modern database systems allow data of finer
and finer granularities to be stored (Januschowski, Kolassa,
Lorenz, & Schwarz, 2013). Operational forecasting in retail,
e.g., for store replenishment, is already conducted not
at highly aggregated levels, but at the most fine-grained
level possible; that is, for count data and intermittent
demands. As a consequence, count data and intermittent
demand forecasting form an active research area, and one
that will become even more important in the future; new
forecasting algorithms are being developed constantly,
together with variations on old ones.

However, so far, the literature on count data and
intermittent demand forecasting has focused on point
forecasts instead of entire predictive distributions, as has
been the norm for many years now in macroeconomic
or financial forecasting, for example. We argue that this
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emphasis on point forecasts misses the mark. Instead,
we should strive to understand the entire predictive
distribution, even for count data, from which we can
extract point, interval or quantile forecasts as desired.
For example, quantile forecasts are obviously necessary in
supply chain forecasting for setting safety amounts, but
also for scenario analyses in promotional or other forecasts.

The question now arises as to how different forecast-
ing methods should be compared. For this, one needs fore-
cast accuracy measures, or equivalently, error measures.
Count data pose specific challenges for error measures. In
particular, minimizing common error measures does not
necessarily lead to the ‘‘best’’ forecastingmethod for count
data, especially for intermittent demand series. In addition,
while the use of the Probability Integral Transform (PIT)
and scoring rules for evaluating continuous predictive dis-
tributions is well established, their discrete counterparts
have not been used in sales forecasting so far.

This paper is organized as follows: first, we discuss clas-
sical point forecast accuracy measures and their problems
for count data. Next, we examine a randomization-based
modification of the standard PIT, as well as proper scoring
rules that are applicable to discrete data. Then, we apply
multiple discrete models to two count datasets and eval-
uate the predictive distributions using the randomized PIT
and scoring rules. Finally, we closewith possibilities for fu-
ture research.

2. Point forecast accuracy measures

2.1. Measures based on absolute errors

Assume that the future data generating process that we
wish to forecast follows an estimated predictive densityf , and let us assume for now that f = f is indeed the
true distribution f of future actuals; i.e., our predictive
density is correctly specified. It is well known that using
the expected value of f as a point forecastwillminimize the
expected squared error. It is almost as well known (and is
an easy derivation to show, cf. Hanley, Joseph, Platt, Chung,
& Belisle, 2001; Schwertman, Gilks, & Cameron, 1990) that
using the median of f as a point forecast will minimize the
expected absolute error.

Let us turn this argument around: the forecast which
minimizes (some estimator of) the expected absolute error
will estimate not the expected value of f , but its median.
In particular, ranking or selecting forecasting methods, or
optimizing the parameters of a forecasting method, based
on the mean absolute deviation (MAD) will reward point
forecasts for yielding not the future expected value, but the
future median realization (Morlidge, 2015).

This distinction makes no difference in the case of
a symmetric predictive distribution f . However, the pre-
dictive distributions that are appropriate for low volume
count data (Syntetos, Babai, Lengu, & Altay, 2011) are usu-
ally far from symmetric, and this distinction does make a
difference in such cases. The fact that optimizing the MAD
yields biased forecasts in this case, or even EMAD-optimal
forecasts that are constant at zero, has been recognized be-
fore (Prestwich, Rossi, Tarim, & Hnich, 2014; Snyder, Ord,
& Beaumont, 2012; Teunter & Duncan, 2009; Wallström

Fig. 1. MADs and MSEs of various point forecasts for y1, . . . , y107 ∼

Pois(0.8). TheMSE is minimized by the expectation of 0.8, while theMAD
is minimized by the median of 1.

& Segerstedt, 2010), but Morlidge (2015) appears to have
been the first to explicitly note the connection to the me-
dian of f .

As an example, assume that f = Pois(λ) for λ <
log 2 ≈ 0.693. In this case, the median of f is 0, whereas
its expectation is λ. The EMAD-optimal point forecast is 0,
regardless of whether λ = 0.01, λ = 0.1 or λ = 0.5. Thus,
an EMAD-optimal point forecast will be biased downward.
Similarly, if log 2 < λ < λ0, where λ0 ≈ 1.678 satisfies
λ0e−λ0 + e−λ0 =

1
2 , then the EMAD-optimal point forecast

will be 1, which is biased upward for log 2 < λ < 1 and
downward for 1 < λ < λ0.

We note that the preceding example does not in any
way presuppose that we constrain the point forecast to
be integers. (Indeed, an unbiased point forecast would of
course simply be λ itself.) Rather, the argument is that,
as described above, the point forecast that minimizes the
EMAD is the median of the future distribution—and the
median of a Poisson-distributed variable turns out to be
integer. Therefore, if our aim is to minimize the EMAD
of a Poisson predictive distribution, this cost function
automatically draws us towards an integer-valued point
forecast, namely the median, which will typically be
biased.

To illustrate this point, we calculated theMAD andMSE
values of various (not necessarily integer) point forecasts
for 107 simulated Poisson distributed random variables
with parameter λ = 0.8. As expected, the MSE is mini-
mized by a point forecast of 0.8, i.e., the expectation, while
the MAD is minimized by a biased point forecast of 1, the
median of the Pois(0.8) distribution (Fig. 1).

Exactly the same argument applies to all accuracy
measures that are multiples of the MAD by a factor
that does not depend on the forecast itself. For instance,
the weighted mean absolute percentage error (wMAPE)
is obtained by dividing the MAD by the mean of the
out-of-sample realizations (Kolassa & Schütz, 2007), and
the mean absolute scaled error (MASE Franses, 2016;
Hyndman, 2006; Hyndman & Koehler, 2006) is obtained
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