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a b s t r a c t

We study the performances of alternative methods for calculating in-sample confidence
and out-of-sample forecast bands for time-varying parameters. The in-sample bands
reflect parameter uncertainty, while the out-of-sample bands reflect not only parameter
uncertainty, but also innovation uncertainty. The bands are applicable to a wide range of
estimation procedures and a large class of observation driven models with differentiable
transition functions. A Monte Carlo study is conducted to investigate time-varying
parameter models such as generalized autoregressive conditional heteroskedasticity and
autoregressive conditional duration models. Our results show convincing differences
between the actual coverages provided by the differentmethods.We illustrate our findings
in a volatility analysis for monthly Standard & Poor’s 500 index returns.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over recent decades, time-varying parameter models
have become increasingly popular in empirical economics
and finance. The rapid development of new methods
for filtering time-varying parameters in dynamic models
with nonlinear and non-Gaussian features has made these
models more accessible, flexible and attractive. Initially,
starting in the 1960s, time-varying parameters for the
mean equation in linear Gaussian models were typically
handled by the Kalman filter and related methods. For
linear Gaussian state space models, the Kalman filter can
be used to calculate the conditionalmeans and variances of
unobserved time-varying parameters (or linear functions
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thereof) in a computationally efficient way; for a detailed
treatment, see for example Durbin and Koopman (2012).
In this modeling framework, the construction of in-sample
confidence bands and out-of-sample forecast bands is
straightforward, and is performed on a routine basis, as
expressions for the conditional variances of the time-
varying parameters are available explicitly. In the case of
nonlinear and/or non-Gaussian extensions of state space
models, the computation of confidence bands can be
somewhat more involved. One example is the stochastic
volatility model, for which the analysis is typically based
on simulation-based methods; see the discussion by
Shephard (2005).

Since the 1980s, new classes of model for time-varying
parameters have been developed. Specifically, models for
the time-varying conditional variance have received con-
siderable attention in the empirical economics and finance
literature. For example, the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Boller-
slev (1986) and Engle (1982) has led to a range of model
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formulations for time-varying parameters. In the standard
ARCH and GARCH models, the conditional variance is ob-
tained by filtering past observations through a volatility
updating equation. The relative simplicity of GARCH mod-
els has spurred their widespread adoption by both aca-
demics and professionals.

In most empirical studies, the estimated volatility from
the GARCH model is presented without in-sample bands
reflecting the parameter uncertainty in the volatility up-
dating equation. Similarly, volatility forecasts may feature
bands that reflect innovation uncertainty, but they typ-
ically ignore the parameter uncertainty. Exact analytical
results are not available because the filters are highly
nonlinear functions of past observations, and as a result,
statistical software rarely provides either in-sample con-
fidence bands or out-of-sample forecast bands to rep-
resent the estimates of such time-varying parameters.
This argument also applies to other models that are re-
lated to GARCH, including the autoregressive conditional
duration (ACD)model of Engle and Russell (1998), themul-
tiplicative error model of Engle (2002), the observation-
driven Poisson countmodel ofDavis, Dunsmuir, and Streett
(2003), and the score driven models of Creal, Koopman,
and Lucas (2013). All of these models belong to the class
of observation-driven models, as opposed to parameter-
driven models; see Cox (1981) for a detailed description
of these two classes of time series models.

We analyze various different methods of constructing
in-sample and out-of-sample bands. For our in-sample
bands, we compare two analytical methods and one
simulation-based method. All of these bands reflect the
parameter uncertainty only. The approximate analytical
bands require only simple computations, and are not
subject to random fluctuations due to simulation error.
These analytical bands can be used when the updating
equation is differentiable and the (asymptotic) distribution
of the estimator for the static parameters is known. For
the computation of forecast bands, we compare three
simulation-based procedures. The first method takes only
innovation uncertainty into account. The second and
third methods incorporate both parameter and innovation
uncertainty. Although these methods require simulations,
the forecast bands are relatively quick to compute. In
particular, we argue that the necessary computations
are more efficient than the bootstrapped forecast bands
proposed by Pascual, Romo, and Ruiz (2006) for GARCH
models, for example.

All of the methods that we consider can be imple-
mented readily in software packages. We investigate
the coverage probabilities of each of these different ap-
proaches in detail over a range of different time-varying
parameter models, and find that simulation-based meth-
ods are the most reliable, but that the approximate analyt-
ical methods also perform well in many settings.

To provide evidence of how effective the different
methods are, we present the results of a Monte Carlo
study in which we compute in-sample confidence bands
and out-of-sample forecast bands for time series generated
using GARCH, score-driven, ACD and time-varying mean
(local level) models. The results reveal that the actual
coverage of our (preferred) analytical bands is close to

the nominal coverage level obtained by simulation. The
simulation-based in-sample confidence bands and out-of-
sample forecast bands all obtain accurate coverage levels.
An empirical illustration for the GARCH model applied to
a time series of monthly log-returns from the Standard &
Poor’s 500 index reveals the practical importance of these
bands. We also show that the choice of the method for
computing in-sample bands is empirically relevant, and
that our analytical bands provide a good approximation
to the more computationally-intensive simulation-based
bands.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the class of observation-driven models.
Section 3 introduces different methods of computing in-
sample bands for the time-varying parameter. Section 4
presents different simulation-based methods for the com-
putation of the out-of-sample forecast bands. Section 5 an-
alyzes the relative performances of the bands in a Monte
Carlo study. Section 6 presents our empirical findings for
the Standard & Poor’s 500 monthly returns. Section 7 con-
cludes.

2. Observation-driven models

In observation-drivenmodels, the time-varying param-
eter is filtered using an updating equation that depends on
past observations. In thesemodels, the focus is on the spec-
ification of themechanism throughwhich past realizations
of the variable of interest affect the current value of the
time-varying parameter.

Consider amodel for an observed time series y1, . . . , yT
given by

yt ∼ py(yt |ft; θ), t = 1, . . . , T , (1)

where density py( · ) is implied by an ‘‘observation equa-
tion’’ for yt and depends on the time-varying parame-
ter ft and the static parameter θ. For example, yt =

ft + εt for a time-varying mean, or yt = µ + f 1/2t εt
for a fixed mean and time-varying variance, with, for in-
stance, εt ∼ NID(0, 1), where NID is normally indepen-
dently distributed with zero mean and unity variance. The
time-varying parameter is defined formally as a function
ft := ft(y1:t−1, f1; θ) that depends on the past observations
y1:t−1

:= {y1, y2, . . . , yt−1}, an initial value f1, and a static
parameter vector θ. The updating function for the time-
varying parameter can be expressed in different ways. For
example, if we consider a linear updating equation consist-
ing of lagged values of yt and ft , we obtain

ft+1 = ω + βft + αs(yt , ft; θ), (2)

with initialization f1, and where s(yt , ft; θ) is a (possibly
nonlinear) function of yt , ft , and θ. The function s( · )
can be chosen in a flexible way, and is often just a
transformation of yt , as we will show in the examples
below. The coefficientsω,α andβ are part of the parameter
vector θ. The recursive nature of the formulation implies
that ft+1 is a (nonlinear) function of yt , . . . , y1, f1 and θ.
Hence, the updating equation (Eq. (2)) is consistent with
the definition of ft , that is, ft := ft(y1:t−1, f1; θ). We can also
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