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a b s t r a c t

We present amodel for generating probabilistic forecasts that combines the kernel density
estimation (KDE) and quantile regression techniques, as part of the probabilistic load
forecasting track of the Global Energy Forecasting Competition 2014. Initially, the KDE
method is implementedwith a time-decay parameter, butwe later improve thismethod by
conditioning on the temperature or period of the week variables in order to provide more
accurate forecasts. Secondly,we develop a simple but effective quantile regression forecast.
The novel aspects of our methodology are two-fold. First, we introduce symmetry into the
time-decay parameter of the kernel density estimation based forecast. Second, we combine
three probabilistic forecasts with different weights for different periods of the month.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present the methodology we used
in our winning entry for the probabilistic load forecast-
ing track of the Global Energy Forecasting Competition
2014 (GEFCom2014). The competition consisted of twelve
weekly tasks which required historical data to be used to
estimate 99 quantiles (0.01, 0.02, . . . , 0.99) for each hour
of the following month. Each forecast is evaluated using
the pinball function. For further details on the competition
structure and the data, the interested reader is referred to
the GEFCom2014 introduction paper (Hong et al., this is-
sue). In Section 2, we present a preliminary analysis of the
data that motivates the development of the main forecast-
ing methods introduced in Section 3. In Section 4, we pro-
vide a short description of our submissions in chronologi-
cal order, to explain the reasoning behind the forecast se-
lection and the developments of the subsequent forecasts.
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We present an overall view of the results and conclude
in Section 5 with a discussion, lessons learned and future
work.

2. Preliminary analysis

We start by performing a preliminary analysis in
order to determine our initial forecasting methods. We
first tested the competition’s initial historical data set to
confirm that load and temperature are strongly correlated,
as has been shown in other studies (Charlton & Singleton,
2014); see also the GEFCom2014 introduction paper (Hong
et al., this issue) for the time series plots of the data.
This motivates the development of our kernel density
estimation method conditional on the temperature (see
Section 3.3). We also found that all of the weather stations
were strongly correlatedwith each other andwith the load
data. Hence, as an initial estimate of the temperature, we
simply took an average over all 25 stations.

The load data have strong daily, weekly and yearly
seasonalities, as well as trends (Hong et al., this issue).
A visual analysis of the load data showed that certain
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hours of the day exhibited strong bi-annual seasonalities
(such as 11 pm), whereas others did not (e.g., 3 pm). This
could be due to the use of heating and cooling appliances
through the seasons. This inspires our choice of a biannual
model for the quantile regression based forecast (see
Section 3.4). A consideration of the autocorrelation and
partial autocorrelation plots confirmed the presence of the
weekly and daily periodicities. Our forecasts described in
the following section are produced with this periodicity in
mind.

3. Methodology

In this section, we present the main methods imple-
mented for the competitive tasks of the competition.

3.1. Kernel density estimation (KDE)

Many of the methods we employ are non-parametric
kernel density based estimates, similar to those presented
by Jeon andTaylor (2012) for probabilisticwind forecasting
and (Arora & Taylor, in press) for household-level proba-
bilistic load forecasting. This method is motivated by the
strong weekly correlations in the data. A simple kernel
density estimate produces an estimate of the probability
distribution function f (X) of the load X (at a particular fu-
ture time period) using past hourly observations {Xi} (as-
suming that i = 1 is the beginning of historical load data:
1st Jan 2005). It is given by

f (X) =
1
nhx

n
i=1

K

X − Xi

hx


, (1)

where hx is the load bandwidth. We use a Gaussian kernel
function, K(•), for all of our kernel-based forecasting
methods. Our first method is a KDE with a time decay
parameter, 0 < λ ≤ 1. The role of the decay parameter
is to give a higher weight to more recent observations.
To forecast day D of the week, D = 1, 2, . . . , 7, at hour
h, h = 1, 2, . . . , 24, we applied a KDE to all historical
observations of the same day D and hour h. This method
considers only observations belonging to the same hourly
period of the week, denoted w, w = 1, . . . , 168, and we
refer to it as KDE-W. This can be expressed as

f (X) =
1
nhx

n
i=1

{i mod s=w}

λα(i)

n
i=1

{i mod s=w}

λα(i)
K


X − Xi

hx


. (2)

The parameter s = 168 is the number of forecasting hours
in a week, and α(i) is a periodic function given by1

α(i) = min (|D − (D(i)− 1A(i))|, T (i)− |D − D(i)|) , (3)

where D(i) = 1, 2, . . . , T (i) is the day of the year (con-
sisting of T (i) days) corresponding to the historical data

1 The careful reader should note that Eq. (3) might need a further
correction by one when D is in a leap year. However, this does not affect
our results, since we did not forecast leap years. In addition, the effect of
such an error on the weight would be negligible.

Xi, and D is the day of the year corresponding to the fore-
casted day. To correct for leap years, we use an indicator
function 1A(i), where A = {i|D(i) > 28 and T (i) = 366}.
Eq. (3) is simply a periodic absolute value function with an
annual period, the minimum values of which occur annu-
ally on the same date as the forecasted day.

This method is similar to that presented by Arora and
Taylor (in press), with the new feature of the half-yearly
symmetry of the time-decay exponential in Eq. (3). Since
there is an annual periodicity in the load, we incorporated
it into the time-decay parameter such that observations
during similar days of the year influence the forecast more
than other, less relevant observations. The decay param-
eter also helps us to take into account the non-stationary
behaviour of demand. This method performed better than
a similar KDE-W using only a simple monotonically de-
creasing time-decay parameter across the year. The model
parameters were generated using cross-validation on the
month prior to the forecasting month. To find the optimal
bandwidth, hx, we used the fminbnd function from the opti-
misation toolbox in Matlab. For the time-decay parameter
λ, we considered different values between 0.92 and 1, with
0.01 increments.2

The kernel density based estimate has been used as
a benchmark in probabilistic forecast methods applied to
household level electricity demand, and serves as a useful
starting point for our forecasts (Arora & Taylor, in press).
The method has the advantage of being quicker to imple-
ment than more complicated kernel-based methods, such
as the conditional kernel density estimate on independent
parameters, which we introduce in the following sections.

3.2. Conditional kernel density estimate on period of week
(CKD-W)

A KDE forecast conditional on the period of the week,
denoted by w, w = 1, . . . , 168, (CKD-W; see Arora &
Taylor, in press) gives a higherweight to observations from
similar hourly periods of the week, and can be represented
as

f (X |w) =

n
i=1

λα(i)K((wi − w)/hw)
n

i=1
λα(i)K((wi − w)/hw)

K

X − Xi

hx


(4)

where α(i) is defined in Eq. (3).
This method is similar to that presented by Arora and

Taylor (in press), but with the new feature of the half-
yearly symmetric time-decay exponential in Eq. (3), which
is justified by the yearly periodicity of the load, as was
explained in the previous section.

The validation process can be very expensive computa-
tionally, especially when searching for multiple optimised
parameters (here, there are three parameters: the band-
widths for load and week period variables, and the time

2 The time-decay parameter must be in the interval (0, 1], where the
smaller the value the fewer historical observations that have a significant
influence on the final forecast. After testing over several tasks, we found
that the decay parameter is bounded below by 0.92.
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