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a b s t r a c t

The probabilistic forecasting method proposed in this paper is based on the use of the
sequence of Nadaraya–Watson estimators. It allows estimates of quantiles to be obtained
without assumptions as to the probability distribution. The effectiveness of the approach is
demonstrated during the Global Energy Forecasting Competition 2014 in the probabilistic
electric load forecasting track.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Load forecasting plays an important role in the man-
agement of the load, and has a great influence on the op-
erations, control and planning of power systems. Accurate
forecasts of the electricity consumption can provide signif-
icant economic benefits.

Most forecasting methods provide estimates of the
future load as point forecasts. This means that we get only
one ‘‘best’’ forecast, which is produced by a numerical
model. Today, more and more decision making processes
in the energy industry require more information than just
a single value. The aim of the probabilistic electric load
forecasting track is to forecast the probabilistic distribution
(in quantiles) of the hourly loads for one utility on a rolling
basis using hourly historical load and weather data from
the utility (Hong et al., this issue).

There are two main approaches to probabilistic fore-
casting: the prediction error approach and the direct
approach. The prediction error approach provides proba-
bilistic forecasts of the errors of an existing deterministic
forecasting model and adds uncertainty estimation to the
existing spot forecasting system. Alternatively, the direct
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approach focuses on providing probabilistic predictions of
the output variable directly (Juban, Siebert, & Kariniotakis,
2007).

In this paper, we propose a direct nonparametric
approach based on the fitting of a sequence of Nadaraya–
Watson estimators. The main idea of nonparametric
estimators sequence building consists of the use of
multiple forecasts, with each forecast computed in a
different way. Then, postprocessing is used to convert
the estimators in the sequence into probabilistic forecasts
(quantiles of the predictive distribution). This technique
avoids the need for prior assumptions as to the underlying
probability distributions.

2. Algorithm description

The main idea of the proposed probabilistic forecasting
algorithm consists of the use of multiple forecasts, with
each forecast computed in a different way using the
previous forecast. These forecasts are then transformed
into quantiles of the predictive distribution. The scheme of
the algorithm is presented in Fig. 1.

Training set T . During the learning process, the n-
vector of outputs is changed. We start the learning process
with the median estimation, and denote the training set
used for it by T ⟨M⟩

= T = (xi, yi) , i = 1, 2, . . . , n, where
M is the number of the median estimator in the sequence.
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Fig. 1. Summary of the proposed algorithm.

Median estimator. Median estimation is the typical
task of point forecasting according to the following criteria:
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D (t) =
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(1 − t) , |t| ≤ 1,
0, |t| > 1. (4)

At this stage of the algorithm, the following variations are
possible:
– various kernel functions (different kernel functions can

be used for different input variables);
– different bandwidths.

The process of constructing the nonparametric estima-
tors sequence begins from the median estimation

YM (x) = q̂0.5 (x) , (5)
where M is number of the middle estimator in the
sequence, then splits into upper sequence building and
lower sequence building.

Nonparametric estimators. The Nadaraya–Watson
estimator (Hardle, 1992) is chosen as the basemodel in the
proposed algorithm.
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variable in the training set on the kth iteration. The
peculiarities of the updating procedure for the training set
are discussed in detail below.

The list of possible variations coincides with the vari-
ations that are allowed in median estimation. Generally
speaking, other machine learning methods (such as neural
networks, support vector machines, etc.) can also be used.

Updating procedure. The procedure of sequence build-
ing looks like the procedure of model generation in some
ensemble learning methods. As with bagging algorithms,
we want to obtain estimators that are as diverse as possi-
ble. However, our task is more complex, because we im-
pose an additional requirement on the estimators:

Yk−1 (x) ≤ Yk (x) , k = 2, . . . , 2M − 2. (7)

This requirement means that, for each input xi, the
forecast of the kth estimator must be no less than the
forecast of the (k−1)th estimator. In otherwords, wewant
to obtain a non-decreasing sequence of estimators.

The requirement in Eq. (7) means that standard diver-
sity generation techniques (bootstrapping, using different
parameters, etc.) are unsuitable. For this reason, we pro-
pose a regular procedure for updating the training set in
order to generate a non-decreasing sequence of estimators.
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