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a b s t r a c t

We summarize the methodology of the team Tololo, which ranked first in the load
forecasting and price forecasting tracks of the Global Energy Forecasting Competition 2014.
During the competition,weused and testedmanydifferent statistical andmachine learning
methods, such as random forests, gradient boosting machines and generalized additive
models. In this paper, we only present the methods that showed the best results. For
electric load forecasting, our strategy consists of producing temperature scenarios that
we then plug into a probabilistic forecasting load model. Both steps are performed by
fitting a quantile generalized additive model (quantGAM). Concerning the electricity price
forecasting, we investigate three methods that we used during the competition. The first
method follows the spirit of that used for the electric load. The second one is based on
combining a set of individual predictors. The last one fits a sparse linear regression to a
large set of covariates. We chose to present these threemethods in this paper because they
perform well and show the potential for improvements in future research.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper presents the methodology employed for the
probabilistic electric load and electricity price forecasting
tracks of the Global Energy Forecasting Competition 2014
(GEFCom2014). We participated in both tracks, but with
different levels of intensity and motivation. We were fa-
miliar with the field of load forecasting before the compe-
tition, but were inexperienced with price forecasting. As
a consequence, we converged rapidly to a unique solution
for load forecasting, but changed ourmethod for electricity
price forecasting constantly as our knowledge and under-
standing increased.
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Quantile regression based on pinball loss minimization
(see Koenker & Bassett, 1978) and generalized additive
models (see Hastie & Tibshirani, 1990; Wood, 2006) are
the main tools of our work. To the best of our knowledge,
no off-the-shelf program for quantile generalized additive
models was available, and we implemented our own solu-
tion for that. We originally designed it for load forecasting,
but it turned out to be the most efficient method for both
tasks. It is presented in Section 2. We also tested a wide
range of other approaches for the price forecasting task, of
which we describe those that we consider to deserve shar-
ing because they show the potential for improvement and
can be applied to other forecasting problems.

The aggregation of experts is considered in Section 4.3.
We were inspired by the work of Nowotarski and Weron
(2015), and extend it to the case where the weights of the
combination can vary over time. More precisely, we adapt
the setting of the robust online aggregation of experts
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(see Cesa-Bianchi & Lugosi, 2006), which has already been
applied successfully to point-wise load forecasting by De-
vaine, Gaillard, Goude, and Stoltz (2013) and Gaillard and
Goude (2015), to quantile regression. Our set of 13 experts
consists of forecasters from the price forecasting literature,
and includes AR (autoregressive) models, TAR (threshold
autoregressive) models, ARX (autoregressive exogenous)
models, TARX (threshold autoregressive exogenous) mod-
els, PAR (spike preprocessed autoregressive) models (as
presented byWeron &Misiorek, 2008), GAMs (generalized
additive models), random forests (see Breiman, 2001), and
gradient boosting machines (see Friedman, 1999).

The third approach, presented in Section 4.4, is based
on covariate selection using the ℓ1 selection procedure,
commonly known as Lasso regression and introduced by
Tibshirani (1996). This was motivated by the fact that we
generated a lot of extra covariates (192) on top of those
used for price forecasting. Thus, at the end of the competi-
tion, we were curious to see how an automatic procedure
would perform in selecting an optimal subset from among
them. ℓ1 selection and quantile regression were studied
by Belloni and Chernozhukov (2011), but have never been
applied to either price or load forecasting. As far as we
could determine, there is no open source code that satis-
fies our needs for the competition. Section 4.4 presents the
kernel-based approach thatwe developed for this purpose.
For the price forecasting task, the results obtained during
the competition differ slightly (sometimes better, some-
timesworse) from those obtained using the threemethods
(quantile GAM, quantile mixture and quantile GLM (gen-
eralized linear model)). This is due largely to the other
approaches that we used over the course of the competi-
tion, and to hybrid variants of those presented here. For
the sake of conciseness, this paper deliberately focuses on
these three methods.

2. Quantile regression with generalized additive mod-
els

We consider a supervised regression setting where we
are asked to forecast a univariate response variable Yt ∈ R
(such as the load) according to several covariates Xt =

(Xt,1, . . . , Xt,d) ∈ Rd (such as the temperature). A training
sample {(Xt , Yt)}

n
t=1 is available.

2.1. Generalized additive models

GAMswere introduced by Hastie and Tibshirani (1990),
and explain the output Yt as a sum of smooth functions
of the different covariates Xt,j. More formally, we assume
that for all time t = 1, . . . , n, Yt = µ(Xt) + εt , where µ
is the unknown function to be estimated and εt are zero
mean random variables from some exponential family dis-
tribution that are independent and identically distributed
(i.i.d.).1 GAMs assume that there exists a link function g
such that

g

µ(Xt)


= f1(Xt,1) + f2(Xt,2) + f3(Xt,3, Xt,4) + · · · , (1)

1 εt are i.i.d. error terms throughout the paper, but their distributions
may change between displays.

where the fj are smooth functions of the covariates Xt,k ∈

R. In what follows, the link function g is the identity and
the smooth functions fj are cubic splines (unless specified
otherwise). Basically, cubic splines are polynomials of de-
gree 3 that are joined at points known as ‘‘knots’’ by sat-
isfying some continuity constraints (see Wood, 2006 for
details). We call S(Ki) the class of cubic splines for some
fixed set of knots, Ki.

We fit the smooth effects fi using penalized regression
methods. To do this, we first choose the knots Ki for each
effect fi, then use the ridge regression that minimizes
the following criterion over all effects f1 ∈ S(K1), f2 ∈

S(K2), . . .:
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2dx, (2)

where X i
t are one or two covariates of Xt that correspond

to each effect fi. Here, λ1, . . . , λp > 0 are regularization
parameters that control the degree of smoothness of each
effect (the higher λi is, the smoother fi is), and have to be
optimized. The knots Ki are distributed uniformly over the
range of the covariate(s) X i

t corresponding to effect fi. The
number of knots (i.e., the cardinal of Ki) is another way
to control the smoothness of the effect fi, and should be
optimized as well. These problems are solved by using the
methodology presented by Wood (2006), which consists
of minimizing the generalized cross validation criterion
(GCV). The method is implemented in the R package mgcv
(see Wood, 2006).

2.2. Quantile regression

Quantile regression was introduced by Koenker and
Bassett (1978). Let Y be a real value random variable and
X be a set of explanatory variables. If FY |X denotes the
conditional cumulative distribution of Y given X , then the
conditional quantile qτ of order τ ∈ [0, 1] of Y knowing X
is defined as the generalized inverse of FY |X:

qτ (Y |X) = F−1
Y |X (τ ) = inf


y ∈ R, FY |X (y) ≥ τ


. (3)

Now, the idea of quantile estimation arises from the
observation that themedian (i.e., q0.5(Y |X)) minimizes the
expected absolute error. More generally, it can be shown
that the conditional quantile qτ (Y |X) is the solution of the
minimization problem:

qτ (Y |X) ∈ argmin
g

E[ρτ (Y − g(X))|X], (4)

where ρτ is the pinball loss defined as ρτ (u) = u(τ −

1{u<0}) for all u ∈ R.
Linear quantile regression is implemented in the R-

package quantreg (see Koenker, 2013), and assumes that
{(Xt , Yt)}t=1,...,n are i.i.d. such that Yt = X⊤

t β + εt , where
β ∈ Rd is a vector of unknown parameters. Linear quantile
regression solves the convex minimization problem

βτ ∈ argmin
β∈Rd

n
t=1

ρτ


Yt − X⊤

t β

, (5)

and estimates qτ usingqτ : x → x⊤βτ .
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