
International Journal of Forecasting ( ) –

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

A multiple quantile regression approach to the wind, solar,
and price tracks of GEFCom2014
Romain Juban a, Henrik Ohlsson a,b, Mehdi Maasoumy a, Louis Poirier a,
J. Zico Kolter a,c,∗
a C3 IoT, Redwood City, CA, USA
b University of California at Berkeley, Berkeley, USA
c School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

a r t i c l e i n f o

Keywords:
Probabilistic forecasting
Quantile regression
Alternating direction method of multipliers
Solar forecasting
Wind forecasting
Load forecasting
Price forecasting
GEFCom2014

a b s t r a c t

This paper proposes a generic framework for probabilistic energy forecasting, and discusses
the application of the method to several tracks in the 2014 Global Energy Forecasting
Competition (GEFCom2014). The proposed method uses a multiple quantile regression
approach to predict a full distribution over possible future energy outcomes, uses the
alternating direction method of multipliers to solve the optimization problems resulting
from this quantile regression formulation efficiently, and uses a radial basis function
network to capture the non-linear dependencies on the input data. For the GEFCom2014
competition, the approach proved general enough to obtain one of the top five ranks in
three tracks, solar, wind, and price forecasting, and it was also ranked seventh in the final
load forecasting track.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many energy forecasting methods provide point fore-
casts, and therefore are not appropriate for making de-
cisions under uncertainty. As uncertainties are intrinsic
to all realistic energy forecasting problems, probabilistic
forecasting – predicting a distribution of possible future
values rather than a point estimate – is essential for accu-
rate energy management. There are a number of methods
of producing probabilistic forecasts, which, broadly speak-
ing, fall into two categories: methods that attempt to fit
a specific parametric probability distribution to the out-
puts, and methods that attempt to predict some function
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(e.g., quantiles) of the target probability distribution di-
rectly. See e.g. Gneiting and Katzfuss (2014) for a general
review of these methods.

In this paper, we focus on the second class of algo-
rithms, and specifically develop a probabilistic forecast-
ing method based upon (multiple) quantile regression.
Althoughmultiple quantile regression is awell-established
technique in the regression literature (see Koenker & Hal-
lock, 2001), thus far it has been applied less in the area
of probabilistic energy forecasting. Our approach includes
threemain components: (1)we generate a complete distri-
bution, represented by a series of quantile predictions, us-
ing an approach based upon (multiple) quantile regression
for 99 quantiles1: α = 0.01, . . . , 0.99; (2) we incorporate
non-linear functions of the input data using radial basis

1 The α-quantile, α = 0.01, . . . , 0.99 for a random variable X , is
defined as yα , such that P(X ≤ yα) = α.
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function (RBF) features (see e.g. Bors, 2001) that are gener-
ated from the input data automatically using the k-means
algorithm (see e.g. Arthur & Vassilvitskii, 2007; Coates &
Ng, 2012; Munnoli & Bapat, 2013); and (3) we solve the re-
sulting optimization problems efficiently using a proposed
alternating direction method of multipliers (ADMM) algo-
rithm.

We developed this framework for the GEFCom2014
energy forecasting competition (see Hong et al., 2016),
where the method obtained a ranking in the top five for
three of the four tasks (solar, wind, and price), and was
ranked seventh in the load forecasting task. The chief
merit of our approach is the fact that the exact same
methodology was applied successfully to all of these tasks,
with no task-specific engineering, except for minimal
feature engineering. Thus, the value of the algorithmcomes
from its ability to obtain a high level of accuracy efficiently
on a wide variety of tasks.

Section 2 defines the probabilistic forecasting problem
and introduces the notation. Section 3 describes the
common machine learning framework that is used to
generate probabilistic forecasts for each energy quantity.
Sections 4–6 present the applications of this framework to
the energy forecasting tasks of GEFCom2014. We describe
the specific model adjustments for each track and the
corresponding results. The paper is concluded in Section 7.

2. Problem formulation

We assume a setting where the quantity of interest
for forecasting, y ∈ R, is a real-valued scalar quantity,
such as the wind power or electricity price. We denote
the relevant covariates used for generating this forecast
by x ∈ Rp. The task of probabilistic forecasting in which
weare interested involves producing (some representation
of) the conditional distribution p(y|x). In our case, we
are concerned with producing a distribution that is
represented by its quantiles. Specifically, we let ŷα be
a prediction of the α-quantile of the output y, and we
consider methods that produce such predictions for α
in some set A (in the case of GEFCom2014, the set is
given by A = {0.01, 0.02, . . . , 0.99}). The quality of the
prediction is then evaluated using the quantile or pinball
loss function, defined as:
ℓ(ŷA, y) =


α∈A

ψα(ŷα − y),

where ψ : R → R is the so-called ‘‘tilted absolute loss’’
function
ψα(z) = max{αz, (α − 1)z}.
The basic idea behind such a loss is that, given a set of
outputs y(i) for i = 1, . . . ,m, the function


i ψα(y

(i)
−z) is

minimized by letting z be the α-quantile of the y(i) terms.
In our quantile regression setting, we presume that we

have access to a training set of m inputs and outputs,
denoted by
{x(i), y(i)}, i = 1, . . . ,m.

Our goal will be to develop a model that minimizes the
sum of these quantile loss functions over this data set:

LA =

m
i=1

ℓA


ŷ(i)A (x

(i)), y(i)


where the notation ŷA(x) highlights the fact that the
predictions depend on the input covariates x.

3. Machine learning framework for probabilistic fore-
casting

In this section, we present our machine learning
approach for probabilistic forecasting based uponmultiple
quantile regression, input selection, non-linear feature
generation, and ADMM optimization. We discuss each of
these elements in detail below.

3.1. Multiple quantile regression

At its core, our method solves a multiple quantile
regression problem using a linear model, referring to
the fact that the predictions are a linear function of the
parameters; the model’s predictions are non-linear in the
inputs, via the use of non-linear feature transformations.
In particular, we assume a mapping from input vectors to
feature vectors, denoted φ : Rp

→ Rn. We then predict
the α-quantile of the output using the prediction function

ŷα(x; θα) = θ Tαφ(x),

where θα ∈ Rn is a parameter vector and where we use
the notation ŷα(x; θα) to emphasize that the prediction
depends on both the input covariates and the parameters
θ . As is apparent from the notation, and as is standard
practice in multiple quantile regression, the model allows
for a separate set of parameters θα being used to predict
each quantile. We fit these parameters by minimizing
the quantile loss function described above, plus some
additional ℓ2 regularization, which here takes the form

minimize
θA

m
i=1


α∈A

ψα

θ Tαφ(x

(i))− y(i)


+
λ

2


α∈A

∥θα∥
2
2. (1)

A crucial point in this model is that the optimization
problem decomposes over each θα; that is, we are
effectively fitting |A| independent models, one for each
quantile of the output. Although it would be possible to
include different features for each quantile prediction as
well, we do not pursue this route in our work. As we
will discuss shortly, using the same feature vector φ(x)
across all models leads to significant reductions in the
computational cost of the algorithm.

One potential (and well-known) issue with multiple
quantile regression is that, because the quantile prediction
functions are trained independently, it is possible to
have predictions that violate the nature of a probability
distribution: e.g., the prediction of the 0.01 quantile may
be higher than the prediction of the 0.02 quantile. This is
clearly inconsistent with the monotonicity constraints of
a consistent distribution. Much of the work with multiple
quantile regressions has been dedicated to coupling the
multiple tasks in a way that enforces monotonicity
constraints, either on the input data points themselves
(Takeuchi, Le, Sears, & Smola, 2006) or on the input points
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