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a b s t r a c t

We explore the abilities of regime switching with Markovian dynamics (MS) and of a
smooth transition (ST) nonlinearity within the class of Multiplicative Error Models (MEMs)
to capture the slow-moving long-run average in the realized volatility. We compare these
models to some alternatives, including considering (quasi) long memory features (HAR
class), the benefits of log transformations, and the presence of jumps. The analysis is applied
to the realized kernel volatility series of the S&P500 index, adopting residual diagnostics
as a guidance for model selection. The forecast performance is evaluated and tested via
squared and absolute losses both in- and out-of-sample, as well as based on a robustness
check on different sample choices. The results show very satisfactory performances of
both MS and ST models, with the former also allowing for the dating and interpretation
of regimes in terms of market events.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

A consolidated body of literature in financial econo-
metrics is devoted to the measurement of asset volatil-
ity, exploiting the information contained in asset price
data collected at a very high frequency. The volatility es-
timators, known as realized volatility (RV) measures, have
allowed for deeper insights into the dynamics of volatility,
which are traditionally analyzed in a modeling and fore-
casting framework within the GARCH paradigm as con-
ditional variances of returns (see Bollerslev, 1986, Engle,
1982, and further extensions; for a review, see Teräsvirta,
2009; for nonlinear models, see Teräsvirta, 2011). Start-
ing from the plain realized volatility, studied in detail
by Andersen, Bollerslev, Diebold, and Labys (2000, 2003),
various other measures have been introduced to take into
consideration the presence of jumps and other market mi-
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crostructure issues (for a review, see Andersen, Bollerslev,
& Diebold, 2010). The most recent addition to the family
of volatility estimators is the realized kernel volatility (de-
veloped by Barndorff-Nielsen, Hansen, Lunde, & Shephard,
2008), which is designed to possess robustness to market
microstructure noise.

While volatility measurement from an end-of-day per-
spective has reached a mature stage, the modeling and
forecasting of conditional volatility is open to refinements,
building on existing dynamic models (cf. among oth-
ers, Brownlees & Gallo, 2010; Cipollini, Engle, & Gallo,
2013; Hansen, Huang, & Shek, 2012; Shephard & Sheppard,
2010). InMultiplicative ErrorModels (MEMs, developed by
Engle, 2002, and Engle &Gallo, 2006), the volatility series is
specified as the product of a time-varying scale factor that
evolves autoregressively and a random disturbance with a
suitable distribution. As it is applied to non-negative val-
ues, a MEM captures dynamics without resorting to logs,
thus producing forecasts of volatility (not log-volatility);
adoptingmultiplicative (rather than additive) disturbances
accommodates heteroskedasticity naturally (‘‘vol-of-vol’’).
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Fig. 1. Realized kernel volatility of the S&P500 index (Jan. 3, 2000 toMar.
10, 2014); the gray shadowed area represents the out-of-sample period
of the main analysis (between Jul. 5, 2011, and Oct. 26, 2012). For the
robustness check, the vertical dashed lines identify the first out-of-sample
period (Jul. 5, 2012 to Oct. 25, 2013) and the solid line is the beginning of
the second out-of-sample period (Jul. 5, 2013).

The volatility profile over long periods typically exhibits
fairly persistent local average volatilities (cf., as a lead-
ing example, the realized kernel volatility of the S&P500
in Fig. 1). Competing models must capture this empirical
regularitywith possibly alternative or complementary fea-
tures (discrete changes in volatility, slow-moving long-run
dynamics, other nonlinearities, or explicit long memory),
and will be evaluated for both their in-sample fitting capa-
bilities and their out-of-sample forecasting performances.
The specific suggestions that we make involve extending
MEMs to have regime-switching (Hamilton, 1989, 1990)
or smooth-transition (Teräsvirta, 1994) representations,
keeping variants of the heterogeneous autoregressive
model (HAR, also known as a quasi-longmemorymodel) of
Corsi (2009) for RV and log-RV, for comparison purposes.

The consideration of time-varying local averages is not
new to the volatility literature (see below for a review);
our extended class of Markov Switching (MS) MEMs high-
lights regime-specific dynamics. Relative to other MEMs,
our approach is distinct from both the mixture MEM (ei-
ther that of De Luca & Gallo, 2004, and Lanne, 2006, which
suffers from the shortcoming of time-independent regime
indicator variables, cf. Bauwens, Hafner, & Laurent, 2012;
or that of De Luca & Gallo, 2009, who make the mixing
weights dependent on a lagged observable variable) and
the P-Spline MEM used by Brownlees and Gallo (2010) for
realized volatility with a time varying average level (which
is a statistical fit to a supposed smooth underlying trend).
A standard HAR may face serious challenges in fitting the
observed pattern given its linear nature; the HAR-J of An-
dersen, Bollerslev, and Diebold (2007) reacts to a separate
measure of jumps as a possible accommodation of abrupt
changes, but its out-of-sample performance depends cru-
cially on jointly forecasting jumps as well. The issue of
whether a log-transformation mitigates the importance of
peaks in the series, flattening out the extent to which local
averages may be present, seems to be mostly an empiri-
cal question. With many models at hand, we need a suit-
able model selection strategy; we adopt a nonparametric
Bayesian procedure (Otranto & Gallo, 2002) for selecting
the number of regimes, and take the view that the pres-

ence of autocorrelation in residuals and/or squared resid-
uals may be seen as evidence of the presence of some form
of model misspecification (in the dynamics and/or nonlin-
earity). In-sample fitting capabilities will not necessarily
correspond to good forecasting performances, especially at
different forecasting horizons; and finally, but possibly as a
by-product, it is useful to evaluate the compatibility of the
results with the interpretation of major events in financial
markets.

The paper is organized as follows: in Section 2, we re-
view the main literature on the nonlinear modeling of the
realized volatility. In Section 3, we discuss the issues be-
hind discrete and slow-moving local average volatilities,
with a description of the Markov Switching and Smooth
Transition extensions within the MEM class; we analyze
the estimators’ properties and provide some Monte Carlo
evidence as to the small-sample properties of the estima-
tors. In the same section,we also detail someof the alterna-
tive parameterizations that may capture different features
of the data. An empirical application to the realized kernel
volatility S&P500 series is the object of Section 4. The esti-
mation of 13 models is a preliminary step to determining
certain features of the data and allowing for a reduction in
the number of models based on their in-sample properties
and forecasting performances (one- and ten-step-ahead
forecasts with the Diebold & Mariano, 1995 (DM), test and
the Model Confidence Set (MCS) sequential test of Hansen,
Lunde, & Nason, 2011, using absolute and squared losses).
The inference on the regimes and the comparison with the
smooth transition function provide some interesting in-
sights on the classification of the periods and the calcula-
tion of the corresponding average levels. The robustness
of the model performances is also checked on different
time spans. Concluding remarks follow. Finally, some extra
details on model estimation and comparison are provided
in a web appendix.

2. High persistence in volatility

There is a major debate in the literature about the na-
ture of the high level of persistence in realized volatility,
and whether it may be the result of some nonlinearity in
the process. The HAR model (Corsi, 2009), although not a
formal long-memory model, can reproduce the observed
hyperbolic-type decay of the autocorrelation function of
(log-)volatility by specifying a sum of volatility compo-
nents over different horizons. Andersen et al. (2007) in-
sert a volatility jump component for capturing the abrupt
changes that characterize the realized volatility, result-
ing in significant improvements in the forecasting perfor-
mance. Baillie and Kapetanios’ (2007) reasoning about the
existence of both non-linear and long memory compo-
nents in many economic and financial time series is de-
veloped byMcAleer andMedeiros (2008), who introduce a
multiple regime smooth transition extension of the HAR;
their model is also able to capture the presence of sign
and size asymmetries. Bordignon andRaggi (2012) propose
an elegant solution for combining, in a single model, both
non-linearity effects, through a Markov switching process,
and high persistence, through fractionally integrated dy-
namics, that are capable of improving the accuracy of both
in- and out-of-sample forecasts. Alternatively, concentrat-
ing on long memory explanations, Andersen et al. (2003)
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