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a b s t r a c t

Sensitivity analysis is important both for its own sake and in combination with diagnostic
testing. We consider the question of how to use sensitivity statistics in practice, and
in particular, how to judge whether the sensitivity is large or small. For this purpose,
we distinguish between absolute and relative sensitivity, and highlight the context-
dependent nature of sensitivity analysis. The relative sensitivity is then applied to forecast
combinations, and sensitivity-based weights are introduced. All of the concepts are
illustrated using the European yield curve. In this context, it is natural to consider the
sensitivity to autocorrelation and normality assumptions. Different forecasting models are
combined using equal, fit-based and sensitivity-based weights, and compared with the
multivariate and random walk benchmarks. We show that the fit-based and sensitivity-
based weights are complementary, but that the sensitivity-based weights perform better
than other weights for long-term maturities.
Crown Copyright© 2013 Published by Elsevier B.V. on behalf of International Institute of

Forecasters. All rights reserved.

1. Introduction

Themajority of papers in applied econometrics concen-
trate on the fit of the models and the statistical signifi-
cance of the coefficients, while sensitivity analysis is often
not reported at all, or is reported only tangentially. This is
unfortunate, because sensitivity analysis is at least as im-
portant as diagnostic testing. While diagnostic testing at-
tempts to answer the question: is it true? (for example,
that a coefficient is zero), sensitivity analysis addresses the
question: does it matter? (that we set the coefficient to
zero). At first glance, the two questions seem to be closely
related, but Magnus and Vasnev (2007) showed that such
is not the case. In fact, the two concepts are essentially or-
thogonal.

Fig. 1 shows the potential danger of ignoring sensitivity.
The sample is given by three points, (x1, y1), (x2, y2), and
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(x3, y3), and two models are fitted. The horizontal line,
given by the average value of the dependent variable
y = (y1 + y2 + y3)/3, provides a minimal fit, but it is
not sensitive to autocorrelation, non-normality, or other
model assumptions. The othermodel provides a perfect fit,
but it can only be used in a very small neighborhood of the
sample points. It is unstable outside the data range [x1, x3],
and even within this range it produces unjustified values
that are bigger than the maximum in the observed data.
In this situation, the simple non-sensitive model is more
reliable.

There are also situations in which one might be inter-
ested in a model with a high rather than a low sensitivity.
For example, if we are interested in detecting a crisis or ab-
normalities in themarket, thenwe prefer a model which is
maximally sensitive, even to small indications of a crisis.

Magnus and Vasnev (2007) provide an overview
of the sensitivity literature, and prove the asymptotic
independence of the commonly-used diagnostic tests and
the sensitivity statistic formally. Diagnostic tests and
sensitivity statistics are therefore complementary, and
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Fig. 1. The sample is given by three points. The horizontal line provides
a minimal fit, but is not sensitive to model assumptions. The curve gives
a perfect fit, but is very unstable.

both require our attention when analyzing a model. It is
possible to derive sensitivity statistics, and several papers
have suggested local and global sensitivity measures.
However, it is more difficult to answer the question of
when a sensitivity statistic is large or small, a question
which is addressed in the current paper. The paper gives
practical recommendations with regard to the way in
which sensitivity statistics can be used. We shall see that
the use of sensitivity is context-dependent, as is also
emphasized by Severini (1996), so thatweneed to consider
sensitivity in relation to the problem under consideration.

In some situations, the value of the sensitivity statistic
is important, requiring a threshold in order to decide
whether the model is sensitive or not; we call this case
‘absolute sensitivity’. In other situations, only the relative
magnitude is important, and we call this case ‘relative
sensitivity’. In both cases, it is essential to realize that
sensitivity (unlike a diagnostic test) is context-dependent,
and will be closely related to the estimator we are
analyzing or the dependent variable we are modeling. To
bring out this dependence, we illustrate all of the concepts
introduced in this paper in a specific application, namely
the forecasting of the Euro yield curve.

We show that, when several forecasts are available, the
weights based on relative sensitivity performwell, and are
complementary to the fit-basedweights. Themainpurpose
of combining forecasts is to improve the forecast accuracy
(Bates & Granger, 1969), but the choice of weights is still an
open question. Timmermann (2006) provides a thorough
overviewof the sizable forecast combination literature, but
in practice the optimal weights have to be estimated, and
this affects their actual performance. The adaptive weights
seem to work well in many situations, but sometimes a
simple alternative with equal weights gives better results,
as was shown by Stock and Watson (2004). This fact is
explained by Winkler and Clemen (1992) as being due to
the instability of the estimated weights used in generating
the combined forecast.

The paper is organized as follows. Section 2 introduces
the practical aspects of sensitivity analysis and provides

a brief overview of the sensitivity literature. It highlights
the context-dependent nature of sensitivity analysis (Sec-
tion 2.1), and distinguishes between absolute (Section 2.2)
and relative (Section 2.3) sensitivity. Section 3 applies the
concept of relative sensitivity to forecast combinations,
and introduces sensitivity-based weights. The empirical
Euro yield curve illustration is given in Section 4, and a de-
tailed description of the data is given in the Data Appendix.
Section 5 concludes.

2. Sensitivity analysis in practice

The concept of sensitivity is closely related to the
concept of robustness, with which readers may be more
familiar. Robustnesswas introduced byHampel, Ronchetti,
Rousseeuw, and Stahel (1986), and has since been studied
extensively in the literature; see Kitamura, Otsu, and
Evdokimov (2013) for a recent contribution. Robustness
deals primarily with the effects of slight perturbations
in the observed data, and often uses the influence
function as a tool. Sensitivity analysis deals not only with
data perturbations, but also with model perturbations.
Sensitivity to the model specification studies the changes
in the model output (often an estimator, test or predicted
value) when one or more of the assumptions underlying
the model are perturbed. The simplest example is given by
Banerjee and Magnus (1999), who studied the sensitivity
of the ordinary least squares estimator to autocorrelation
in the regression errors. In this paper, we concentrate on
model sensitivity, and refer to it simply as sensitivity.

Magnus and Vasnev (2007) introduced local sensitivity
through a Taylor expansion. If the variable (or parameter)
of interest, say y, depends on a nuisance parameter, say θ ,
then ŷ(θ) denotes the estimator of y for each given value of
θ . Special cases are the ‘restricted’ estimator ŷ(0), obtained
by setting θ = 0, and the ‘unrestricted’ estimator ŷ(θ̂),
obtained by setting θ equal to its estimated value θ̂ . The
function ŷ(θ) provides not only these two special cases, but
the whole sensitivity curve, given by the estimates of y for
each given value of θ .

The first-order Taylor expansion of the sensitivity curve
at the restricted point is given by

ŷ(θ) = ŷ(0) + S θ + O(θ2), (1)

where

S =
∂ ŷ(θ)

∂θ


θ=0

(2)

is the first derivative at the restricted point θ = 0, and is
called the local sensitivity statistic, or simply the sensitivity.

Sensitivity is computed for maximum likelihood esti-
mators by Magnus and Vasnev (2007), and, in general, it
can be expressed in terms of the Hessian. In the cases of
mean, variance, and distribution misspecification, the sen-
sitivity statistics allow tractable representations. This is
particularly the case for the Bs and Ds statistics of Banerjee
and Magnus (1999), and the sensitivity of GLS estimators
in panel data derived by Vasnev (2010).

One might think that the sensitivity statistic and the
corresponding diagnostics would be highly correlated.
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