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a b s t r a c t

We propose a new tool, the Generalized Autocontour (G-ACR), as the basis for a battery of
dynamic specification tests that are applicable (in-sample or out-of-sample) to univariate
or multivariate random processes. We apply this methodology to the modeling of a
multivariate system by specifying the dynamics of the marginal distributions of each
process in the system, together with a copula that ties up the marginals to produce their
multivariate distribution. We work with the probability integral transforms (PIT) of the
system that, under a correct specification of the conditional model, should be i.i.d. U[0,1].
The dimensionality of the system is not a constraint, because the information contained in
the vector of PITs is condensed into an indicator, which is the basis of the proposed tests.
We construct hyper-cubes of different sizes within the maximum hyper-cube formed by
a multidimensional uniform density [0, 1]n, and assess the locations of the empirical PITs
(duplex, triplex, n-plex of observations) within the corresponding population hyper-cubes.
If the conditional model is correct, the volumes of the population hyper-cubes must be
the same as those in their empirical counterparts. This approach allows the researcher to
focus on different areas of the conditional density model, so as to assess the regions of
interest. We estimate a trivariate model for a very large number of trades on the stocks of
three large U.S. banks and find that the contemporaneous dependence among institutions
is asymmetric, which implies that when liquidity drains (due to a lack of trading) in one
institution, we should expect a concurrent effect among similar institutions. On the other
hand, when liquidity is plentiful (due to dense trading), the trades on the stocks of the
institutions are not correlated. We assess the models’ performances by evaluating their
one-step-ahead density forecasts of trades.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Generalized Autocontour (G-ACR) is a general-
ized version of the autocontour methodology proposed by
González-Rivera, Senyuz, and Yoldas (2011, GR2011) for
detecting misspecification in the dynamics of a time se-
ries model and departures from the assumed conditional
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density model. The G-ACR overcomes some of the lim-
itations of the original methodology of GR2011. First,
when the conditional density of interest departs from
standard densities in financial econometrics, e.g. Normal,
Student-t , Exponential, etc., the analytical expressions of
the autocontours may be mathematically cumbersome to
obtain, meaning that we need to resort to numerical meth-
ods in order to compute their density mass. The diffi-
culty is compounded when the system is multivariate
(González-Rivera & Yoldas, 2012). In contrast, the G-ACR
is very easy to obtain for any density because it is based on
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probability integral transforms (PIT) instead of standard-
ized innovations, which are the basis of the original ACR.
Second, GR2011 only consider univariate stochastic pro-
cesses, with the dynamics restricted to the conditional
mean and conditional variance, and a time-invariant func-
tional form of the density of the standardized innovations
of the model. The advantage of G-ACR is that it can be
applied to either univariate or multivariate random pro-
cesses. In a multivariate framework, the dimensionality of
the system is not a constraint, because the information
contained in the vector of PITs is condensed into an indi-
cator, which constitutes the basis of the proposed tests.
Furthermore, the components of the multivariate system
may have different marginal densities, which could be
tested individually; more importantly, though, the mul-
tivariate density, obtained as a copula function linking
the marginals, can also be tested jointly. As a result, our
statistics based on G-ACR are also useful diagnostics for
correct copula specification. G-ACR does not restrict the
dynamics of the model to any particular moment(s), and
it is also applicable to cases where the predictive density
does not have a closed form solution, e.g.,multistep predic-
tive densities in nonlinear models, and we have to resort
to simulations or nonparametric methods, but where we
can still obtain the PIT process from the simulated density.
Third, the tests proposed by GR2011 have asymptotic vari-
ance–covariance matrices that do not all have closed-form
solutions, with some combining parametric and nonpara-
metric expressions. In contrast, and because of the simplic-
ity of G-ACR, the asymptotic variances of the tests all have
closed formulations that depend on only one parameter,
the a priori specified probability level associated with the
G-ACR.

As a brief introduction to G-ACR, explained in detail in
the forthcoming sections, suffice it to say that the basis of
our testing techniques is the construction of hyper-cubes
of different sizes within the maximum hyper-cube formed
by a multidimensional uniform density [0, 1]n. We assess
the locations of the empirical PITs (duplex, . . . , n-plex of
observations) within the corresponding population hyper-
cubes. If the multivariate model is correct, the volumes
of the population hyper-cubes must be the same as those
of their empirical counterparts. Our tests evaluate these
differences statistically as either rejecting or failing to
reject the proposed density model. This approach also
permits us to focus on different areas of the conditional
density in order to assess those regions of interest. There is
also a graphical visualization aspect of our approach that is
very helpful for guiding the modeling.

As an illustration of the proposed methodology, we
will specify a multivariate model for the numbers of stock
trades of three large U.S. banking institutions: Bank of
America, JP Morgan Chase, and Wells Fargo. Though the
number of trades is a discrete random variable, these three
big banks show almost continuous trading, so that, for a
given interval of time, the number of trades is large enough
that the data can be considered to be almost continuous.
For instance, at the 5min frequency (from January 3 to June
30, 2011), the median number of trades is 1757 trades for
Bank of America, 1300 for JP Morgan, and 1210 for Wells
Fargo. Dynamic trading is important because it reflects the

arrival of news, and is intimately related to issues of liquid-
ity risk and market microstructure; see O’Hara (1995) and
Madhavan (2000) among others.We proceed by specifying
an autoregressive system for the number of trades of each
bank. We will use different distributional assumptions for
the marginal densities of each component of the system,
but we are most interested in the modeling of contempo-
raneous correlations of the trades, as theymay have impli-
cations for the risk that these large institutions pose to the
banking system and beyond. We use a copula function to
understand the contemporaneous correlation among the
three banks. Heinen and Rengifo (2007) also implemented
a copula approach, but restricted themselves to a normal
copula where the dependence is contained in a correla-
tion coefficient. As the recent crisis has shown, the corre-
lation among institutions varies during episodes of low or
high liquidity. We explore the possibility of an asymmet-
ric contemporaneous correlation such that the correlation
may be different when the number of trades is large (the
market is very active) or small (the market is slow). We as-
sess the model in an out-of-sample environment by evalu-
ating the one-step-ahead density forecasts of the number
of trades. The modeling and forecasting exercises will al-
lowus to showcase the proposed testingmethodology, and
the visualization techniques in particular, used to drive the
specification exercise.

The paper is organized as follows. In Section 2, we
introduce G-ACR and present the testing methodology
for univariate and multivariate models. In Section 3, we
offer extensive Monte Carlo simulations to assess the size
and power of the tests within the context of multivariate
processes with and without contemporaneous correlation.
In Section 4, we provide an empirical illustration dealing
with a trivariate system for the number of trades for the
three large banks mentioned above, and in Section 5 we
conclude. The Appendix contains mathematical proofs.

2. Generalized autocontour and test statistics

We introduce a device — the generalized autocontour
— as the basis for constructing statistical tests for the null
hypothesis of a well-specified conditional density model,
whether univariate or multivariate.

2.1. Generalized autocontour: G-ACR

FollowingDiebold, Gunther, and Tay (1998) among oth-
ers, if the proposed predictive density model for Yt , i.e.
{f ∗

t (yt |Ωt−1)}
T
t=1, coincides with the true conditional den-

sity {ft(yt |Ωt−1)}
T
t=1, then the sequence of probability in-

tegral transforms (PIT) of {Yt}
T
t=1 w.r.t {f ∗

t (yt |Ωt−1)}
T
t=1,

i.e. {ut}
T
t=1, must be i.i.d. U(0, 1), where ut =

 yt
−∞

f ∗
t

(vt |Ωt−1)dvt . Thus, the null hypothesis H0 : f ∗
t (yt |Ωt−1)

= ft(yt |Ωt−1) is equivalent to the null hypothesis H
′

0 :

{ut}
T
t=1 is i.i.d. U(0, 1).
We construct the G-ACR under i.i.d. uniformity for both

univariate and multivariate predictive densities. We start
with the univariate case. Within the process {ut}

T
t=1, we

choose any vector (ut,ut−k) ⊂ R2. Under H
′

0 : {ut}
T
t=1

i.i.d. U(0, 1), the G-ACRαi,k is defined as the set of points
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