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We extend the recently introduced latent threshold dynamic models to include dependencies
among the dynamic latent factors which underlie multivariate volatility. With an ability
to induce time-varying sparsity in factor loadings, these models now also allow time-
varying correlations among factors, which may be exploited in order to improve volatility
forecasts. We couple multi-period, out-of-sample forecasting with portfolio analysis
using standard and novel benchmark neutral portfolios. Detailed studies of stock index
and FX time series include: multi-period, out-of-sample forecasting, statistical model
comparisons, and portfolio performance testing using raw returns, risk-adjusted returns
and portfolio volatility. We find uniform improvements on all measures relative to standard
dynamic factor models. This is due to the parsimony of latent threshold models and their
ability to exploit between-factor correlations so as to improve the characterization and
prediction of volatility. These advances will be of interest to financial analysts, investors
and practitioners, as well as to modeling researchers.
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1. Introduction

Since the early Bayesian approaches to factor volatil-
ity modeling (e.g., Aguilar, Prado, Huerta, & West, 1999;
Aguilar & West, 2000; Pitt & Shephard, 1999), there has
been an increasing interest in refined models, based on
their practical benefits in financial studies in particular
(e.g., Quintana, Carvalho, Scott, & Costigliola, 2010; Quin-
tana, Lourdes, Aguilar, & Liu, 2003). While the original ap-
proaches assumed constant factor loadings and no time
dependence of the latent factors for financial returns se-
ries, recent extensions have introduced short-term time
series models for factor loadings (e.g., Carvalho, Lopes, &
Aguilar, 2011). To date, little has been discussed about
dependencies among factor processes, due primarily to
the adoption of identifying constraints under which inde-
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pendent factor processes are mandated. With the increas-
ing interest in sparse factor models - models in which
multiple factor loadings are zero over some periods of time
- this has changed: such models now allow for dependen-
cies among latent factor processes, and our main modeling
goal here is to develop and exploit this in forecasting and
portfolio decisions.

We achieve these developments in analyses of dy-
namic factor models using latent thresholding, an idea and
methodology which was recently introduced and devel-
oped theoretically by Nakajima and West (2013a), with
applications to dynamic regression and time-varying VAR
models. A follow-up application (see Nakajima & West,
2013b) added dynamic sparsity to traditional factor mod-
els; the current paper extends this with the development
of dependent factor model structures, novel portfolio con-
structions, and their embedding in a complete analysis and
forecasting system. In the applied studies of the paper,
this is shown to be of quite substantial benefit in terms
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of improved forecasting performances and portfolio deci-
sion outcomes, as well as in improved model fits on purely
statistical criteria. We develop the applied examples using
a range of stylized Bayesian portfolio decision constructs,
and, as part of this, introduce a novel strategy that explic-
itly integrates a benchmark neutral strategy into a more or
less standard portfolio optimization. In addition to demon-
strating the ability of sparse, dependent factor models to
outperform standard models under this and other portfo-
lio rules, this development will also be of interest to fore-
casters and financial decision makers in other contexts.

This work contributes modeling, forecasting and de-
cision analytic advances to the growing body of litera-
ture on dynamic factor approaches to time series analy-
sis. Beginning with earlier developments of dynamic fac-
tor models in time series (e.g., Geweke & Zhou, 1996;
Pefla & Box, 1987; Stock & Watson, 1989), these ap-
proaches have become popular in macroeconomic applica-
tions (e.g., Aruoba, Diebold, & Scotti, 2009; Bai & Ng, 2006;
Del Negro & Otrok, 2008; Forni & Gambetti, 2010; Forni,
Hallin, Lippi, & Reichlin, 2000; Koop & Potter, 2004; Stock &
Watson, 2002), as well as in financial applications in which
multivariate volatility is represented in factor structures
and other forms (e.g., Aguilar & West, 2000; Asai, McAleer,
& Yu, 2006; Chib, Nardari, & Shephard, 2006; Doz & Re-
nault, 2006; Fan, Fan, & Lv, 2008; Han, 2005; Harvey, Ruiz,
& Shephard, 1994; Philipov & Glickman, 2006; Pitt & Shep-
hard, 1999; Yu & Meyer, 2006). Recent developments in
time-varying factor loadings models that provide part of
the foundation for our work here have been noted par-
ticularly for the forecasting and statistical improvements
they can generate (e.g., Del Negro & Otrok, 2008; Lopes
& Carvalho, 2007). Our work builds on structural and dy-
namic model concepts from these areas, introducing dy-
namic, sparse factor models with dependencies among
latent factor processes that are shown to be able to provide
substantial additional improvements in model fit, forecast-
ing and portfolio decisions.

The remainder of the paper is organized as follows.
Section 2 summarizes the standard framework of dy-
namic factor models. Section 3 discusses model identifi-
cation, sparse dynamic factors and the key rationale for
dependent factor models. Section 4 discusses the latent
thresholding concept and its application to factor models.
Section 5 summarizes the new class of dynamic sparse fac-
tor models, with time-varying volatility matrices allow-
ing correlated factors. Sections 6 and 7 discuss analysis,
model comparison, forecasting, and portfolio decisions in
two case studies: a 10-dimensional stock price index time
series, and a 20-dimensional FX time series. Some sum-
mary comments appear in Section 8. An Appendix briefly
outlines the Bayesian Markov chain Monte Carlo compu-
tational method for model fitting; this links to more ex-
tensive technical details in prior publications for interested
readers, as well as to software.

Some notation. We use the distributional notation y ~
N(a,A),d ~ U(a,b),p ~ B(a,b),v ~ G(a,b), for the
normal, uniform, beta, and gamma distributions, respec-
tively. We use diag(ay, ..., ay) to refer to a diagonal ma-
trix whose diagonal elements are the arguments. We also
uses : ttodenotes,s+ 1,...,t whens < t, for succinct
subscripting; e.g., y1.r denotes {y1, ..., yr}.

2. Basic setting and background: traditional dynamic
factor models

2.1. Basic model context

We begin with traditional dynamic factor models with
time-varying factor loadings and volatility components, as
follows. The m x 1 vector response time series y; (t = 1,
2,...) follows

Ye=¢ +Bfi+v, v ~N(O, Xp), (1)
fi=Gf—1+ &, & ~N@O,YT), (2)
where
e ¢ = (cy, ..., Cye) is the mx 1 time-varying local mean
at time t;
o fi = (fir,....fi) is a k x 1 vector of latent factors

evolving according to a VAR(1) model with a diagonal
(k x k) AR coefficient matrix G = diag(y1, ..., Yk);

o & = (&1,..., &) isak x 1 vector of factor innova-
tions with time-varying variance matrix Y; containing
elements vjj;

e B; is the m x k time-varying factor loadings matrix; and

o v, = (Vig, ..., Vme) is @am x 1 residual vector with a
diagonal time-varying volatility matrix X, = diag(oft,
ce, 02,

The &, and v; sequences are independent and mutually in-
dependent. Eqs. (1) and (2) define a broad class of dynamic
latent factor models, and variants of the models are rou-
tinely applied to financial time series. The AR coefficient
matrix G in the factor evolution model is assumed to be
constant and diagonal; this could also be relaxed for other
applications in which a persistent but time-varying matrix
may be of interest, although the applications here do not
suggest such an extension for the current analyses.

To ensure the mathematical identification of factor
models, and as a matter of modeling choice, we use the
traditional lower triangular constraint on the dynamic fac-
tor loadings matrix process B; (e.g., Aguilar & West, 2000;
Geweke & Zhou, 1996; Lopes & West, 2004). Noting that B,
is “tall and skinny” - that is, the number of factors k will
typically be far less than the number of series m - the up-
per triangular elements are by = Ofork > j > i > 1,
and the main diagonal elements are b;; = 1fori =1 : k.
Importantly, the traditional model has a diagonal factor in-
novations volatility matrix Y, while admitting volatility
models for the diagonal elements.

2.2. AR models for dynamic parameter processes

Complete model specification requires specific struc-
tures for the time-varying parameter processes ¢; and B,
and the diagonal X, and Y. The simplest and most widely
used are basic AR(1) models for univariate parameters, as
follows.

Factor loadings B;. Univariate AR(1) models for univariate
factor loadings have become increasingly popular in the
literature (e.g., Del Negro & Otrok, 2008; Lopes & Carvalho,
2007). For eachi = 2 : mandj < i, denote by B the
loading relating series (row) i to factor (column) j in B,
recalling that the upper right triangle elements are zero
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