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a b s t r a c t

Weextend the recently introduced latent threshold dynamicmodels to include dependencies
among the dynamic latent factors which underlie multivariate volatility. With an ability
to induce time-varying sparsity in factor loadings, these models now also allow time-
varying correlations among factors, which may be exploited in order to improve volatility
forecasts. We couple multi-period, out-of-sample forecasting with portfolio analysis
using standard and novel benchmark neutral portfolios. Detailed studies of stock index
and FX time series include: multi-period, out-of-sample forecasting, statistical model
comparisons, and portfolio performance testing using raw returns, risk-adjusted returns
andportfolio volatility.We finduniform improvements on allmeasures relative to standard
dynamic factor models. This is due to the parsimony of latent threshold models and their
ability to exploit between-factor correlations so as to improve the characterization and
prediction of volatility. These advances will be of interest to financial analysts, investors
and practitioners, as well as to modeling researchers.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Since the early Bayesian approaches to factor volatil-
ity modeling (e.g., Aguilar, Prado, Huerta, & West, 1999;
Aguilar & West, 2000; Pitt & Shephard, 1999), there has
been an increasing interest in refined models, based on
their practical benefits in financial studies in particular
(e.g., Quintana, Carvalho, Scott, & Costigliola, 2010; Quin-
tana, Lourdes, Aguilar, & Liu, 2003). While the original ap-
proaches assumed constant factor loadings and no time
dependence of the latent factors for financial returns se-
ries, recent extensions have introduced short-term time
series models for factor loadings (e.g., Carvalho, Lopes, &
Aguilar, 2011). To date, little has been discussed about
dependencies among factor processes, due primarily to
the adoption of identifying constraints under which inde-
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pendent factor processes are mandated. With the increas-
ing interest in sparse factor models – models in which
multiple factor loadings are zero over some periods of time
– this has changed: such models now allow for dependen-
cies among latent factor processes, and ourmainmodeling
goal here is to develop and exploit this in forecasting and
portfolio decisions.

We achieve these developments in analyses of dy-
namic factor models using latent thresholding, an idea and
methodology which was recently introduced and devel-
oped theoretically by Nakajima and West (2013a), with
applications to dynamic regression and time-varying VAR
models. A follow-up application (see Nakajima & West,
2013b) added dynamic sparsity to traditional factor mod-
els; the current paper extends this with the development
of dependent factor model structures, novel portfolio con-
structions, and their embedding in a complete analysis and
forecasting system. In the applied studies of the paper,
this is shown to be of quite substantial benefit in terms
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of improved forecasting performances and portfolio deci-
sion outcomes, as well as in improved model fits on purely
statistical criteria. We develop the applied examples using
a range of stylized Bayesian portfolio decision constructs,
and, as part of this, introduce a novel strategy that explic-
itly integrates a benchmark neutral strategy into a more or
less standard portfolio optimization. In addition to demon-
strating the ability of sparse, dependent factor models to
outperform standard models under this and other portfo-
lio rules, this development will also be of interest to fore-
casters and financial decision makers in other contexts.

This work contributes modeling, forecasting and de-
cision analytic advances to the growing body of litera-
ture on dynamic factor approaches to time series analy-
sis. Beginning with earlier developments of dynamic fac-
tor models in time series (e.g., Geweke & Zhou, 1996;
Peña & Box, 1987; Stock & Watson, 1989), these ap-
proaches have become popular inmacroeconomic applica-
tions (e.g., Aruoba, Diebold, & Scotti, 2009; Bai & Ng, 2006;
Del Negro & Otrok, 2008; Forni & Gambetti, 2010; Forni,
Hallin, Lippi, & Reichlin, 2000; Koop& Potter, 2004; Stock &
Watson, 2002), as well as in financial applications in which
multivariate volatility is represented in factor structures
and other forms (e.g., Aguilar &West, 2000; Asai, McAleer,
& Yu, 2006; Chib, Nardari, & Shephard, 2006; Doz & Re-
nault, 2006; Fan, Fan, & Lv, 2008; Han, 2005; Harvey, Ruiz,
& Shephard, 1994; Philipov & Glickman, 2006; Pitt & Shep-
hard, 1999; Yu & Meyer, 2006). Recent developments in
time-varying factor loadings models that provide part of
the foundation for our work here have been noted par-
ticularly for the forecasting and statistical improvements
they can generate (e.g., Del Negro & Otrok, 2008; Lopes
& Carvalho, 2007). Our work builds on structural and dy-
namic model concepts from these areas, introducing dy-
namic, sparse factor models with dependencies among
latent factor processes that are shown to be able to provide
substantial additional improvements inmodel fit, forecast-
ing and portfolio decisions.

The remainder of the paper is organized as follows.
Section 2 summarizes the standard framework of dy-
namic factor models. Section 3 discusses model identifi-
cation, sparse dynamic factors and the key rationale for
dependent factor models. Section 4 discusses the latent
thresholding concept and its application to factor models.
Section 5 summarizes the new class of dynamic sparse fac-
tor models, with time-varying volatility matrices allow-
ing correlated factors. Sections 6 and 7 discuss analysis,
model comparison, forecasting, and portfolio decisions in
two case studies: a 10-dimensional stock price index time
series, and a 20-dimensional FX time series. Some sum-
mary comments appear in Section 8. An Appendix briefly
outlines the Bayesian Markov chain Monte Carlo compu-
tational method for model fitting; this links to more ex-
tensive technical details in prior publications for interested
readers, as well as to software.
Some notation. We use the distributional notation y ∼

N(a,A), d ∼ U(a, b), p ∼ B(a, b), v ∼ G(a, b), for the
normal, uniform, beta, and gamma distributions, respec-
tively. We use diag(a1, . . . , ak) to refer to a diagonal ma-
trix whose diagonal elements are the arguments. We also
use s : t to denote s, s + 1, . . . , t when s < t , for succinct
subscripting; e.g., y1:T denotes {y1, . . . , yT }.

2. Basic setting and background: traditional dynamic
factor models

2.1. Basic model context

We begin with traditional dynamic factor models with
time-varying factor loadings and volatility components, as
follows. The m × 1 vector response time series yt (t = 1,
2, . . .) follows

yt = ct + Bt ft + νt , νt ∼ N(0,6t), (1)
ft = Gft−1 + εt , εt ∼ N(0,ϒt), (2)

where

• ct = (c1t , . . . , cmt)
′ is them×1 time-varying localmean

at time t;
• ft = (f1t , . . . , fkt)′ is a k × 1 vector of latent factors

evolving according to a VAR(1) model with a diagonal
(k × k) AR coefficient matrix G = diag(γ1, . . . , γk);

• εt = (ε1t , . . . , εkt)
′ is a k × 1 vector of factor innova-

tions with time-varying variance matrix ϒt containing
elements υijt ;

• Bt is them×k time-varying factor loadings matrix; and
• νt = (ν1t , . . . , νmt)

′ is a m × 1 residual vector with a
diagonal time-varying volatility matrix 6t = diag(σ 2

1t ,

. . . , σ 2
mt).

The εs and νt sequences are independent and mutually in-
dependent. Eqs. (1) and (2) define a broad class of dynamic
latent factor models, and variants of the models are rou-
tinely applied to financial time series. The AR coefficient
matrix G in the factor evolution model is assumed to be
constant and diagonal; this could also be relaxed for other
applications in which a persistent but time-varying matrix
may be of interest, although the applications here do not
suggest such an extension for the current analyses.

To ensure the mathematical identification of factor
models, and as a matter of modeling choice, we use the
traditional lower triangular constraint on the dynamic fac-
tor loadings matrix process Bt (e.g., Aguilar & West, 2000;
Geweke & Zhou, 1996; Lopes &West, 2004). Noting that Bt
is ‘‘tall and skinny’’ – that is, the number of factors k will
typically be far less than the number of series m – the up-
per triangular elements are bijt = 0 for k ≥ j > i ≥ 1,
and the main diagonal elements are biit = 1 for i = 1 : k.
Importantly, the traditional model has a diagonal factor in-
novations volatility matrix ϒt , while admitting volatility
models for the diagonal elements.

2.2. AR models for dynamic parameter processes

Complete model specification requires specific struc-
tures for the time-varying parameter processes ct and Bt ,
and the diagonal 6t and ϒt . The simplest and most widely
used are basic AR(1) models for univariate parameters, as
follows.
Factor loadings Bt . Univariate AR(1) models for univariate
factor loadings have become increasingly popular in the
literature (e.g., Del Negro & Otrok, 2008; Lopes & Carvalho,
2007). For each i = 2 : m and j < i, denote by βijt the
loading relating series (row) i to factor (column) j in Bt ,
recalling that the upper right triangle elements are zero
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