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a b s t r a c t

This paper develops methods for VAR forecasting when the researcher is uncertain about
which variables enter the VAR, and the dimension of the VARmay be changing over time. It
considers the casewhere there areN variableswhichmight potentially enter a VAR and the
researcher is interested in forecasting N∗ of them. Thus, the researcher is faced with 2N−N∗

potential VARs. If N is large, conventional Bayesian methods can be infeasible due to the
computational burden of dealing with a huge model space. Allowing for the dimension of
the VAR to change over time only increases this burden. In light of these considerations, this
paper uses computationally practical approximations adapted from the dynamic model
averaging literature in order to develop methods for dynamic dimension selection (DDS)
in VARs. We then show the benefits of DDS in a macroeconomic forecasting application. In
particular, DDS switches between different parsimonious VARs and forecasts appreciably
better than various small and large dimensional VARs.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Vector autoregressions (VARs) are among the most
popular tools in modern empirical macroeconomics, and
a large body of theoretical and empirical literature on
Bayesian VAR forecasting exists.Whenworkingwith VARs,
one faces many modelling and specification choices, and
various Bayesianmethods have been developed for dealing
with them. Examples of recent surveys or empirical papers
investigating such choices include those of Carriero, Clark,
and Marcellino (2011), Del Negro and Schorfheide (2011),
Karlsson (2012) and Koop and Korobilis (2009). However,
one important aspect of specification choice has been
relatively neglected in the VAR literature: the choice of the
dimension of the VAR (i.e., which variables to include as
dependent variables in the VAR).

Issues relating to the dimension of a VARhave increased
in importance recently, due to the growth of the large
VAR literature. Papers such as those by Banbura, Gian-
none, and Reichlin (2010), Carriero et al. (2011), Carriero,
Kapetanios, andMarcellino (2009), Giannone, Lenza,Mom-
feratou, and Onorante (2010) and Koop (2013) work with
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VARs that have tens of dependent variables, or even over a
hundred. In this literature, it is common for the researcher
to be interested in forecasting a small number of variables
(e.g., inflation and unemployment). There are many other
variables which are potentially useful for forecasting, and
any that prove useful should be included in the VAR. How-
ever, most of these potential variables turn out to be ir-
relevant, in which case omitting them will lead to a more
parsimonious VAR and improved forecasts. The problem
with this is that the researcher does not know, a priori,
which of these extra variables should be included. This
problem is addressed in the large VAR literature by simply
including all of the potential dependent variables, but us-
ing an informative prior to shrink their effects so as to avoid
over-fitting. It is worth emphasizing that this shrinkage is
done on the VAR coefficients, but the dimension of the VAR
always remains the same. Other approaches to VAR vari-
able selection, such as that of Korobilis (2013), also focus
on the choice of explanatory variables (lagged dependent
variables), but maintain the full set of dependent variables
at all points in time.

An alternative to shrinking the coefficients is to de-
velop statistical methods for selecting the appropriate di-
mension of the VAR. This is the challenge which is taken
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up in the small Bayesian literature on VAR dimension
selection (see, e.g., Andersson & Karlsson, 2009; Ding &
Karlsson, 2012; Jarocinski & Mackowiak, 2011). One con-
tribution of the present paper is to add to this literature,
developing a new method for VAR dimension selection.
However, its major contribution lies in the fact that it
performs dimension selection in a time-varying manner.
That is, our method allows the dimension of the VAR to
change over time. Thus, the forecasting model may switch
from, e.g., a small VAR to a larger VAR, as the relevant set of
forecasting variables switches over time.When forecasting
a particular variable or set of variables, other predictors can
enter and leave theVAR in adata-basedmanner so as to im-
prove the forecasting performance. Such an approach has
been found to improve forecast performances in regres-
sions (see e.g. Rossi & Sekhposyan, 2010). For instance, our
application involves forecasting inflation, unemployment
and industrial production. Our approach allows a trivari-
ate VARmodel using these variables to forecast inflation at
some points in time, four-variable VARs (e.g., involving in-
flation, unemployment, industrial production and another
predictor such as the oil price) at other times, and n-variate
VARs at other times. We allow for every possible combi-
nation of up to 12 dimensional VARs (i.e., n = 3, . . . , 12).
Thus, ifN is themaximumVAR dimension and there areN∗

variables we are interested in forecasting, we are choosing
between 2N−N∗

VARs at each point in time.
To the best of our knowledge, allowing for such dimen-

sion switching has only been addressed in the Bayesian
literature by Koop and Korobilis (2013), though in a differ-
ent context (with time-varying parameters in the VAR) and
a vastly reduced model space involving three VARs in-
stead of the 2N−N∗

VARs considered in the present pa-
per. Here, we are faced with a huge model space, un-
less N is very small or N∗ is very close to N . This huge
model space means that even standard Bayesian meth-
ods which do not allow for dimension switching will be
computationally burdensome or infeasible. For instance,
simply calculating marginal likelihoods for 2N−N∗

VARs
will be computationally daunting even if one is working
with a homoskedastic VAR with a natural conjugate prior.
Allowing for empirically important extensions such as het-
eroskedasticity will increase this burden. Further allow-
ing for VAR dimension switching would add even greater
complications. In light of these computational restrictions,
we implement VAR dimension switching using an ap-
proximate method. This approximate method extends and
adapts the dynamic model averaging (DMA) methodology
of Raftery, Karny, and Ettler (2010). This approach was de-
veloped for time-varying parameter (TVP) regressionmod-
els, but we adapt it for VARs. A key component in this
approach is the predictive likelihood (i.e., the predictive
density for the dependent variables evaluated at the ob-
served outcome). With VARs of different dimensions, the
predictive likelihoods are not comparable, since the differ-
ent VARs have different vectors of dependent variables. To
surmount this problem, we adopt a strategy used by An-
dersson and Karlsson (2009) and Ding and Karlsson (2012)
and use the predictive likelihood for the dependent vari-
ables which are common to all models (i.e., the N∗ vari-
ables we are interested in forecasting). It is also worth

noting that DMA, as its name suggests, is a method for
model averaging. However, it can also be used for model
selection, and that is the sense in which we use it in this
paper (although it is straightforward to adapt our approach
to do model averaging). Thus, we use the terminology dy-
namic dimension selection (DDS) to describe our method-
ology, which allows for VARs of different dimension to be
selected in a time-varying manner.

In an inflation forecasting exercise, we find our DDS
methodology to forecast better than several standard,
fixed-dimensional, VAR approaches. We show that sub-
stantial dimension switching does occur, and indicate pre-
cisely which variable(s) enter/leave the selected inflation
forecasting model as time evolves.

2. The econometrics of Bayesian VARs

Let yt be an N-vector containing all of the potential de-
pendent variables in the VAR. Our model space is defined
through the following set of VARs:
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and z(m)
t is a row vector containing an intercept and lags of

each of the n variables in y(m)
t . When forecasting h periods

ahead, Z (m)
t will contain information dated t − h or earlier.

Our model space is defined by these m = 1, . . . ,M
VARs. We divide the dependent variables into a set of N∗

variables that we are interested in forecasting, yft , and the
remainder, yrt . y

(m)
t always includes yft , and the different

models are defined by different subsets of yrt . Since there
are 2N−N∗

possible subsets of yrt , we haveM = 2N−N∗

VARs.
Analytical results exist for posterior and predictive

analysis with homoskedastic Bayesian VARs when a nat-
ural conjugate prior is used. However, many macroeco-
nomic applications have found that it is important to allow
the errors to be heteroskedastic (e.g., Primiceri, 2005; and
Sims & Zha, 2006). When heteroskedasticity is present, the
analytic posterior and predictive results are lost and an ex-
act Bayesian analysis requires the use of computationally
demanding MCMC methods. With large model spaces, do-
ing MCMC in every model can be computationally infeasi-
ble. However, if Σ

(m)
t is a known matrix, analytical results

are again available. For this reason, we replace Σ
(m)
t with

an estimate. This has the drawback that it ignores param-
eter uncertainty relating to Σ

(m)
t , but the advantage of a

great reduction in computational time,meaning thatmuch
larger model spaces can be handled. In particular, we use
an Exponentially Weighted Moving Average (EWMA) es-
timate to model the volatility (see RiskMetrics, 1996; and
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