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a b s t r a c t

This paper begins by presenting a simplemodel of theway inwhich experts estimate prob-
abilities. The model is then used to construct a likelihood-based aggregation formula for
combining multiple probability forecasts. The resulting aggregator has a simple analytical
form that depends on a single, easily-interpretable parameter. This makes it computation-
ally simple, attractive for further development, and robust against overfitting. Based on a
large-scale dataset in which over 1300 experts tried to predict 69 geopolitical events, our
aggregator is found to be superior to several widely-used aggregation algorithms.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Experts are often asked to give decision makers subjec-
tive probability estimates as to whether certain events will
occur or not. Having collected such probability forecasts,
the next challenge is to construct an aggregation method
that will produce a consensus probability for each event
by combining the probability estimates appropriately. If
the observed long-run empirical distribution of the events
matches that of the aggregate forecasts, the aggregation
method is said to be calibrated. This means that, of the
events which have been assigned an aggregate forecast of
0.3, for instance, 30% should occur. According to Ranjan
(2009), however, calibration is not sufficient for useful de-
cision making. The aggregation method should also maxi-
mize sharpness, which increases as the aggregate forecasts
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concentrate more closely around the extreme probabili-
ties 0.0 and 1.0. Therefore, it can be said that the overall
goal in probability estimation is to maximize the sharp-
ness, subject to calibration (for more information, see for
example Gneiting, Balabdaoui, & Raftery, 2007; Pal, 2009).

The most popular choice for aggregation is linear opin-
ion pooling, which assigns each individual forecast aweight
which reflects the importance of the expert. However, Ran-
jan and Gneiting (2010) show that any linear combination
of (calibrated) forecasts is uncalibrated and lacks sharp-
ness. Furthermore, in several simulation studies, Allard,
Comunian, and Renard (2012) show that linear opinion
pooling performs poorly relative to other pooling formu-
las with a multiplicative instead of an additive structure.

The literature to date has introduced a wide range
of methods for aggregating probabilities in a non-linear
manner (see for example Bordley, 1982; Polyakova &
Journel, 2007; Ranjan & Gneiting, 2010); however, many
of these methods involve a large number of parameters,
making them computationally complex and susceptible to
over-fitting. By contrast, parameter-free approaches, such
as the median or the geometric mean of the odds, are too
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simple to be able to incorporate the use of training data
optimally. In this paper, we propose a novel aggregation
approach that is simple enough to avoid over-fitting,
straightforward to implement, and yet flexible enough to
make use of training data. Thus, our aggregator retains the
benefits of parsimony from parameter-free approaches,
but without losing the ability to use training data.

The theoretical justification for our aggregator arises
from a log-odds statistical model of the data. The log-odds
representation is convenient from amodeling perspective.
Being defined on the entire real line, the log-odds can
be modeled using a Normal distribution. For example,
Erev, Wallsten, and Budescu (1994) model log-odds with
a Normal distribution centered at the ‘‘true log-odds’’.1
The variability around the ‘‘true log-odds’’ is assumed to
arise from the personal degree of momentary confidence
that affects the process of reporting an overt forecast.
We extend this approach by adding a systematic bias
component to the Normal distribution. That is, the Normal
distribution is centered at the ‘‘true log-odds’’, which
have been multiplied by a small positive constant (strictly
between zero and one), and hence, are systematically
regressed toward zero.

To illustrate this choice of location, assume that 0.9 is
the most informed probability forecast that could be given
for a future event with two possible outcomes. A rational
forecaster who aims to minimize a reasonable loss func-
tion, such as the Brier score,2 without any previous knowl-
edge of the event, will give an initial probability forecast of
0.5. However, as soon as he gains some knowledge about
the event, he will produce an updated forecast that is a
compromise between his initial forecast and the new in-
formation acquired. The updated forecast will therefore be
conservative, and necessarily too close to 0.5, as long as the
forecaster remains only partially informed about the event.
If most forecasters fall somewhere on this spectrum be-
tween ignorance and full information, their average fore-
castwill tend to fall strictly between 0.5 and 0.9 (see Baron,
Ungar, Mellers, & Tetlock, submitted for publication, for
more details). This discrepancy between the ‘‘true proba-
bility’’ and the average forecast is represented in ourmodel
by the use of the regressed ‘‘true log-odds’’ as the center of
the Normal distribution.

BothWallsten, Budescu, and Erev (1997) and Zhang and
Maloney (2012) recognize the presence of this systematic
bias.Wallsten et al. (1997) discuss amodelwith a bias term
that regresses the expected responses towards 0.5. Zhang
and Maloney (2012) provide multiple case studies show-
ing evidence of the existence of the bias. However, nei-
ther study describes either a way of correcting the bias or
a potential aggregation method to accompany the correc-
tion. Zhang and Maloney (2012) estimate the bias at an
individual level, requiring multiple probability estimates

1 In this paper, we use quotation marks in any reference to a true
probability (or log-odds), in order to avoid a philosophical discussion.
These quantities should be viewed simply as model parameters that are
subject to estimation.
2 The Brier score is the squared distance between the probability

forecast and the event indicator that is equal to 1.0 or 0.0, depending on
whether the event happened or not, respectively.

from a single forecaster. Even though our approach can
be extended rather trivially in order to correct the bias at
any level (individual, group, or collective), in this paper we
treat the experts as being indistinguishable, and correct the
systematic bias at a collective level by shifting each proba-
bility forecast closer to its nearest boundary point. That is,
if the probability forecast is less (more) than 0.5, it ismoved
away from its original point and closer to 0.0 (1.0).

This paper begins with the modeling assumptions that
form the basis for the derivation of our aggregator. After
describing the aggregator in its simplest form, the paper
presents two extensions: the first generalizes the aggrega-
tor to events with more than two possible outcomes, and
the second allows for varying levels of systematic bias at
different levels of expertise. The aggregator is then eval-
uated under multiple synthetic data scenarios and on a
large real-world dataset. The real data were collected by
recruiting over 1300 forecasters, ranging from graduate
students to forecasting and political science faculty and
practitioners, and then posing them 69 geopolitical pre-
diction problems (see the Appendix for a complete listing
of the problems). Our main contribution arises from our
ability to evaluate competing aggregators on the largest
dataset ever collected on geopolitical probability forecasts
made by human experts. Given such a large dataset, we
have been able to develop a generic aggregator that is an-
alytically simple and yet outperforms other widely used
competing aggregators in practice. After presenting the
evaluation results, the paper concludes by exploring some
future research ideas.

2. Theory

Using the logit function

logit(p) = log


p
1 − p


,

a probability forecast p ∈ [0, 1] can be mapped uniquely
to a real number called the log-odds, logit(p) ∈ R. This
allows us to conveniently model probabilities with well-
studied distributions, such as the Normal distribution, that
are defined on the entire real line. In this section, assume
that we have N experts who each provide one probability
forecast of a binary-outcome event. We consider these
experts to be interchangeable. That is, no one forecaster
can be distinguished from the others either across or
within problems. Denote the experts’ forecasts by pi and
let Yi = logit(pi) for i = 1, 2, . . . ,N . As was discussed
earlier, wemodel the log-odds using a Normal distribution
centered at the ‘‘true log-odds’’, which have been regressed
towards zero by a factor of a. More specifically,

Yi = log


p
1 − p

1/a

+ ϵi,

where a ≥ 1 is an unknown level of systematic bias, p

is the ‘‘true probability’’ to be estimated, and each ϵi
i.i.d.
∼

N (0, σ 2) is a random shock with an unknown variance
σ 2 on the individual’s reported log-odds. If the model is
correct, the event arising from thismodelwould occurwith
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