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a b s t r a c t

Wepresent a refinedparametricmodel for forecasting electricity demandwhichperformed
particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We
begin by motivating and presenting a simple parametric model, treating the electricity
demand as a function of the temperature and day of the data. We then set out a series
of refinements of the model, explaining the rationale for each, and using the competition
scores to demonstrate that each successive refinement step increases the accuracy of the
model’s predictions. These refinements include combining models from multiple weather
stations, removing outliers from the historical data, and special treatments of public
holidays.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present a refined parametric model
for short term load forecasting. Our model performed
particularly well in the recent Global Energy Forecasting
Competition (GEFCom 2012). In Section 2, we motivate
and introduce a simple parametric model, which already
performs better than the competition’s benchmark model.
Section 3 then sets out a series of refinements of ourmodel,
usingWeighted Root Mean Squared Error (WRMSE) scores
from the competition to confirm that each refinement does
actually improve the results. Section 5 identifies various
possible avenues for further improvement, and Section 6
concludes.

2. Our basic parametric model

The models we build are based on the well-established
idea of multiple linear regression. Existing linear regres-
sion models for electrical loads include those discussed
by Moghram and Rahman (1989) and Ramanathan, Engle,
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Granger, Vahid-Araghi, and Brace (1997), as well as the
competition’s benchmark model. Our initial model sup-
poses that electricity usage is a function

E = α1 + α2d + α3T + α4Td + α5T 2
+ α6T 2d, (1)

where T is the temperature, d is the day number (ranging
from 0 to 1649 for the 1650 days of historical data), and
α1, . . . , α6 are coefficients to be determined. This form is
suggested by multiplying out the expression

(a + bT + cT 2)(rd + k), (2)

where a, b, c, r and k are constants. The first factor models
the quadratic relationship between temperature and en-
ergy use that we observe when exploring the data graph-
ically; the second factor allows the model to reflect any
changes over time in the response to temperature. Thus,
our model takes into account the effect of temperature on
energy use (due to heating and air conditioning), long term
trends in energy use, and interactions between these two.

Fig. 1 shows the relationship between temperature and
load for zone 1 at hour 1 during the summer, where we
have detrended the load by fitting and subtracting a long-
term linearmodel. Fitting the relationshipwith a quadratic
function, as shown in the figure, achieves an R̄2 value
(i.e., an adjusted R2 value) of 0.70779. On the other hand,
using a cubic function gives a lower R̄2 value of 0.70743,
suggesting that a cubic function, despite having one more
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Fig. 1. Using a quadratic function 16.642T 2
− 1711.5T + 39 751 to model the relationship between temperature and load for zone 1, hour 1 during the

summer, achieving an R̄2 value (i.e., an adjusted R2 value) of 0.70779. The load has been detrended by fitting and subtracting a long-term linear model.

parameter, cannot really fit the data any better. On the
basis of observations such as this, we decide not to include
T 3 terms in our model (1).

We apply Eq. (1) separately for each of the 20 zones and
each of the 24 h of the day. In addition, we also divide the
year into two seasons (taking summer as April to Septem-
ber, inclusive, and winter as the rest of the year), and di-
vide the days into two types: weekdays andweekend days.
Thus, we split the historical load data into 20× 24× 2× 2
groups and analyse each group of data separately. This is
becausewehypothesise that the relationships between en-
ergy use, temperature T andday dmaybe different for each
of these 20 × 24 × 2 × 2 groups. For example, house-
holders’ reactions to temperatures might be different on
weekends, when they are more likely to be at home. Simi-
larly, the reaction to temperaturemay varywith the timeof
day (e.g., at night people are asleep), season (changing use
of heating or air conditioning), and zone (due to cultural,
demographic and climate-related differences). In-sample
testing suggests that this is indeed the case, and that this
model produces more accurate predictions when we split
the data into groups than when considering all of the data
together.

In order to apply Eq. (1), however, we need to have a
value for the temperature T for each zone. Initially, we
determine, for each zone, the weather station which ‘‘fits
the best’’ with the energy usage of that zone. Consider the
group g = (z, h, s, t) for a given zone z, hour of the day h,
season s, and day type t (weekday or weekend). For each
weather station i = 1, . . . , 11, we build an energy model

Ei = α1 + α2d + α3Ti + α4Tid + α5T 2
i + α6T 2

i d, (3)

by selecting the coefficients α1, . . . , α6 that minimise the
sum of in-sample squared errors for the energy use in
group g . We then choose the best weather station indi-
vidually for each group g , again minimising the sum of in-
sample squared errors. The computation of the coefficients
is done using singular value decomposition (SVD), as was

Table 1
WRMSE scores obtained by our model after each refinement step. (These
scores are from the private leaderboard, obtained after the competition.)

New feature Improvement Score

Competition benchmark model – 95,588
Our initial model – 84,362
Multiple weather stations 901 83,461
Day-of-season terms 4359 79,102
Four seasons instead of two 2366 76,736
Local averaging 3090 73,646
Outlier removal 120 73,526
Public holidays treated specially 2898 70,628
Smoother temperature forecast 3541 67,087
Our competition entry score – 67,214

argued for by Press, Teukolsky, Vetterling, and Flannery
(1992, Section 15.4).

Note that the weather station for each group is chosen
independently. This allows, for instance, two different
weather stations to be used for a particular zone in summer
and winter. Knowing nothing about the geography of the
zones and weather stations, we find it plausible a priori
that, if a zone is close to two weather stations, one may be
more suitable during summer and the other duringwinter,
for example because of seasonal wind patterns.

Finally, in order to produce forecasts from our model,
we need to predict temperatures for the forecast week, 1st
July 2008 to 7th July 2008. Because we are not meteorol-
ogists, and wish to concentrate our efforts on understand-
ing the behaviour of loads rather than of weather systems,
our temperature estimates take a rather simple form. For
each weather station i = 1, . . . , 11, each day D of the fore-
cast week, and each hour h = 1, . . . , 24, we estimate a
mean temperatureMi,D,h using the historical data. Specifi-
cally, we look at the corresponding day of the year in each
of the four previous years, and ten days either side of each
of these days; we then take the mean temperature at hour
h over all of these days. This makes Mi,D,h the mean of
4 × (10 + 1 + 10) = 84 data points. We then simply use
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