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a b s t r a c t

This paper develops an efficient approach to modelling and forecasting time series data
with an unknown number of change-points. Using a conjugate prior and conditioning
on time-invariant parameters, the predictive density and the posterior distribution of
the change-points have closed forms. Furthermore, the conjugate prior is modeled as
hierarchical in order to exploit the information across regimes. This framework allows
breaks in the variance, the regression coefficients, or both. The regime duration can be
modelled as a Poisson distribution. A new, efficient Markov chain Monte Carlo sampler
draws the parameters from the posterior distribution as one block. An application to a
Canadian inflation series shows the gains in forecasting precision that our model provides.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper develops an efficient Bayesian approach
to modelling and forecasting time series data with
an unknown number of change-points. The approach
simplifies structural break analysis and reduces the
computational burden relative to existing approaches in
the literature. A conjugate prior is modeled as hierarchical
in order to exploit information across regimes. The
regime duration can be inferred from a fixed structural
change probability, or modelled as a Poisson distribution.
Compared to existing time series models of Canadian
inflation, including alternative structural break models,
our specification produces superior density forecasts and
point forecasts.

Accounting for structural instability in macroeconomic
and financial time series models is important. Empirical
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applications by Clark and McCracken (2010), Geweke and
Jiang (2011), Giordani, Kohn, and van Dijk (2007), Liu
and Maheu (2008), Stock and Watson (1996), and Wang
and Zivot (2000), among others, demonstrate a significant
degree of instability.

The problem of forecasting in the presence of structural
breaks has recently been addressed by Koop and Potter
(2007), Maheu and Gordon (2008), Maheu and McCurdy
(2009) and Pesaran, Pettenuzzo, and Timmermann (2006)
using Bayesianmethods. These approaches do provide fea-
sible solutions, but they are all computationally intensive.

The purpose of this paper is to provide a change-point
model which is suitable for out-of-sample forecasting and
has the attractive features of the previous approaches,
but which is computationally less demanding. The pa-
rameters in each regime are drawn independently from a
hierarchical prior. This allows for learning about the struc-
tural change process and its effect on model parameters,
and is convenient for computation. We introduce a new
Markov chainMonte Carlo (MCMC) sampler for drawing all
of the parameters, including the hierarchical prior, the pa-
rameters of the durations, the change-points, and the pa-
rameters characterizing each regime, from their posterior
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distributions jointly. As a result, the mixing of the chain is
better than that of a regular Gibbs sampling scheme as per
Chib (1998). Lastly, different types of break dynamics, in-
cluding having breaks in the variance, the regression coef-
ficients or both, are nested in this framework.

We extend the work of Maheu and Gordon (2008)
and Maheu and McCurdy (2009) in four directions. First,
a conjugate prior for the parameters that characterize
each regime is adopted. Conditional on this prior and
the time-invariant parameters, the predictive density has
a closed form, which reduces the computational burden
compared to that of Maheu and Gordon (2008).1 Second, a
hierarchical structure for the conjugate prior is introduced
to allow the pooling of information across regimes, as did
Pesaran et al. (2006). Third, we show how the regime
duration can be modeled as a Poisson distribution, which
implies duration-dependent break probabilities. Lastly, we
show how to produce the smoothed distribution of the
change-points.

Koop and Potter (2007) also model regime durations,
but they assume a heterogeneous distribution for the
duration in each regime. Their approach augments the
state space with regime durations, meaning that there are
O(T 2) states, which implies a large transition matrix. In
contrast, we assume that the regime durations are drawn
from the same distribution. This simplification results in
the number of states in our model being O(T ). Koop and
Potter (2007) assume that, after a structural change, the
parameters in the new regime are related to those in
the previous regime through a random walk. This path
dependence in parameters increases the computation time
further.

Different versions of our model are applied to a
Canadian inflation series in order to investigate its dynamic
stability. Canadian inflation is challenging to forecast, as
inflation targeting was introduced in 1991. This raises the
question of the usefulness of the data prior to this date for
forecasting after 1991. We also show that incorporating
exogenous subjective information from policy changes
into our model can improve the forecasts further.

The log-predictive likelihood is used as the criterion
for model comparison. The best model is the hierarchical
model, which allows breaks in the regression coefficients
and the variance simultaneously. This model provides
large improvements compared to both linear no-break
models and autoregressive benchmarks with a GARCH
parametrization. A sub-sample analysis is consistent with
the results from the full sample. We also show how
exogenous information or variables can be incorporated in
our framework for out-of-sample forecasting. A posterior
analysis based on the optimal model identifies four major
change-points in the Canadian inflation dynamics. The
duration-dependent break probability is not a significant
feature of the data.

1 Maheu and Gordon (2008) assume a conditional conjugate prior and
use Gibbs sampling to compute the predictive density. The computational
benefits of our approach are that it requires a conjugate prior and a
structural break process which are simplified relative to other models in
the literature.

The paper is organized as follows. Section 2 introduces
the model, and a MCMC method is proposed for efficient
sampling from the posterior distribution. Section 3 extends
the non-hierarchical prior to a hierarchical one in order
to exploit the information across regimes. Different
extensions of the hierarchical model are introduced
in Section 4, including models with breaks only in
the variance, breaks only in the regression coefficients,
or independent breaks in both. A duration-dependent
break probability is also modeled by assuming a Poisson
distribution for the regime durations. Section 5 applies the
model to a Canadian inflation time series. Finally, Section 6
concludes.

2. Structural break model with a conjugate prior

In what follows, we assume that two consecutive
structural breaks define a regime. A regime consists of a
set of contiguous data drawn from a data density using
a fixed model parameter θ . Different regimes will have
different values of θ , which is assumed to be drawn from
a specified distribution. The number of observations in a
regime denotes the duration of a regime. We discuss how
to compute the posterior density of θ for each regime,
as well as the predictive density. Section 2.1 then gives
specifics and shows how all possible structural break
points (regimes) can be integrated out in order to form
predictions.

If time i is the starting point of the most recent regime,
it is assumed that the data before time i are not informative
for the posterior of the parameter θ which governs the
current regime.

If the most recent break is at time i (i ≤ t), then the
duration of the current regime at time t is defined as dt =

t − i + 1. The duration is used as a state variable in what
follows, for two reasons. First, we wish to study not only
the forecasting problem but also the ex-post analysis of
multiple change-points in-sample.2 Second, working with
dt facilitates the modeling of regime durations directly,
which we discuss later.

Formally, define dt as the duration of the most recent
regime up to time t , and dt ∈ {1, . . . , t} by construction. If
a break happens at time t , then dt = 1. If dt = t , then
there is no break throughout the whole sample. Define
Yi,t = (yi, . . . , yt) for 1 ≤ i ≤ t . If i > t, Yi,t is an empty
set.

In order to form the predictive density for yt+1
conditional on the duration dt+1, we require the posterior
density based on data Y1,t . Let the data density of yt+1,
given the model parameter θ and information set Y1,t ,
be denoted as p(yt+1 | θ, Y1,t). There are two cases to
consider. The first case is that the regime continues for one
more period, while the second case is the occurrence of
a structural change, with a new draw of the parameter θ
occurring between t and t + 1. If p(θ) is the prior for θ ,
then, conditional on the duration dt+1, the posterior is
p(θ |dt+1, Y1,t) ≡ p(θ |Yt−dt+1+2,t)

∝


p(yt−dt+1+2, . . . , yt |θ)p(θ) dt+1 > 1
p(θ) dt+1 = 1. (1)

2 Maheu and Gordon did not consider the smoothed distribution of
breaks, but focused on the filtered distribution of change points.
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