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A B S T R A C T

This note details a complete microeconomic characterization of the physical relationships between input use and
the level of output of a simple point-to-point gas pipeline system and uses it to contribute to the public policy
discussions pertaining to the economic regulation of natural gas pipelines. We show that the engineering
equations governing the design and operations of that infrastructure can be approximated by a single production
equation of the Cobb-Douglas type. We use that result to inform three public policy debates. First, we prove that
the long-run cost function of the infrastructure formally verifies the condition for a natural monopoly, thereby
justifying the need of regulatory intervention in that industry. Second, we examine the conditions for cost-
recovery in the short-run and contribute to the emerging European discussions on the implementation of short-
run marginal cost pricing on interconnector pipelines. Lastly, we analyze the performance of rate-of-return
regulation in that industry and inform the regulatory policy debates on the selection of an appropriate au-
thorized rate of return. We highlight that, contrary to popular belief, the socially desirable rate of return can be
larger than the market price of capital for that industry.

1. Introduction

The last 30 years have seen an enduring interest in the construction
of large-scale natural gas pipelines across the globe. Though an emer-
ging literature has studied the market effects of a new pipeline project,1

the examination of the technology and costs of these capital-intensive
infrastructures has attracted less attention. Yet, that analysis is critically
needed to inform policy development and decisions. Even in countries
where liberalization reforms have been implemented, natural gas pi-
pelines remain regulated (von Hirschhausen, 2008) and authorities
must frequently deal with project-specific requests for adjustments
within the regulatory framework.2

So far, two different methodological approaches have been con-
sidered to investigate the technology. The first is rooted in engineering
and can be traced back to Chenery (1949). It aims at numerically de-
termining the least-cost design of a given infrastructure using

optimization techniques (Kabirian and Hemmati, 2007; Ruan et al.,
2009; André and Bonnans, 2011). This approach is widely applied by
planners and development agencies to assess the cost of a specific
project (Yépez, 2008). Yet, because of its sophistication and its nu-
merical nature, it is seldom considered in regulatory policy debates
(Massol, 2011). The second approach involves the econometric esti-
mation of a flexible functional form – usually a translog specification –
to obtain an approximate cost function. This method has become pop-
ular in Northern America either to estimate the industry cost function
using cross-section datasets (Ellig and Giberson, 1993) or to model the
cost function of a single firm using a time series approach (Gordon
et al., 2003). So far, data availability issues have hampered the appli-
cation of this empirical approach in Continental Europe and Asia.

This research note develops a third approach: it proves that a pro-
duction function of the Cobb-Douglas type captures the physical re-
lationship between input use and the level of output of a simple point-
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1 Among others, Newbery (1987) assesses the trade opportunities generated by a new pipeline, Hubert and Ikonnikova (2011) evaluate the impacts on the relative bargaining powers of
exporting and transit countries, and Rupérez Micola and Bunn (2007) and Massol and Banal-Estañol (2016) investigated the relation between pipeline utilization and the degree of spatial
market integration between interconnected markets.

2 For example, the augmented rate-of-return that was allocated to two new pipeline projects in France during the years 2009–16: the pipeline connecting the new Dunkerque LNG
terminal to the national transportation network and the North-South Eridan project (CRE, 2012).
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to-point pipeline infrastructure. More precisely, we show how that
micro-founded model of the technology naturally emerges from the
engineering equations governing the design of that infrastructure. One
of the great merits of that approach is that it greatly facilitates the
application of the standard theory of production to characterize the
microeconomics of a natural gas pipeline system.

To explore the policy implications, we use that production function
to successively examine the properties of the cost function in the long
and in the short run. We also compare the market outcomes obtained
under three alternative conditions of industrial organization (un-
regulated private monopoly, average-cost pricing, and rate-of-return
regulation). Our results: (i) indicate the presence of pronounced in-
creasing returns to scale in the long run; (ii) confirm the natural
monopolistic nature of a gas pipeline system and the need for reg-
ulatory intervention; (iii) clarify the conditions for cost-recovery if
short-run marginal cost pricing is imposed on such infrastructure; (iv)
quantify the performance of rate-of-return regulation in that industry,
and (v) reveal that the socially desirable rate of return is not necessarily
equal to the market price of capital in this case.

2. Theoretical model of the technology

We consider a simple point-to-point pipeline infrastructure that
consists of a compressor station injecting a pressurized flow of natural
gas Q into a pipeline to transport it across a given distance l.

Following Chenery (1949) and Yépez (2008), designing such a
system imposes to determine the value of three engineering variables:
the compressor horsepower H , the inside diameter of the pipe D and τ
the pipe thickness. These variables must verify three engineering
equations presented in Table 1 (first column). The compressor equation
gives the power required to compress the gas flow from a given inlet
pressure p0 to a predefined outlet pressure +p Δp0 where Δp is the net
pressure rise. The Weymouth equation models the pressure drop be-
tween the inlet pressure +p Δp0 measured after the compressor station,
and the outlet one p1, which is assumed to be equal to p0. Lastly,
concerns about the mechanical stability of the pipe impose a relation
between the thickness τ and the inside diameter D.

We now combine these equations to construct an approximate
production function. To our knowledge, the pressure rise Δp usually
ranges between 1% and 30% of p0, which leads to the first-order ap-
proximations detailed in Table 1 (second column). Combining them,
one can eliminate the relative pressure rise Δp p/ 0 and obtain the fol-
lowing relation between the output Q and two engineering variables H
and D:
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This relation can be reformulated as a production function that
gives the output as a function of two inputs: energy and capital. First,
we let E denote the total amount of energy consumed by the infra-
structure to power the compressor. By definition, the total amount of
energy E is directly proportional to the horsepower H . Second, we let K
denote the replacement value of the pipeline. We assume that the ca-
pital stock K is directly proportional to the pipeline total weight of steel
S and let PS denote the unit cost of steel per unit of weight. Hence,

= ×K P SS . The total weight of steel S required to build that pipeline is
obtained by multiplying the volume of steel in an open cylinder by the
weight of steel per unit of volume WS:
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where ≈π 3.1416 is the mathematical constant. Combining that equa-
tion with the mechanical stability equation in Table 1, the amount of
capital expenditure related to the pipeline is as follows:
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This equation shows that the pipeline diameter is directly propor-
tional to the square root of K , the amount of capital invested in the
pipeline. So, the engineering equation (1) can readily be rewritten as a
production function: =Q B K E8/9 1/3, where B is a constant. To simplify,
we rescale the output by dividing it by B and use this rescaled output
thereafter. So, the Cobb-Douglas production function of a gas pipeline
is:

= −Q K E ,β α α1 (4)

where the capital exponent parameter is =α 8/11 and =β 9/11 is the
inverse of the degree to which output is homogeneous in capital and
energy. As <β 1, the technology exhibits increasing returns to scale.

3. Results and policy implications

In this section, we show how the technological model above can be
applied to derive several policy-relevant insights. Since natural gas pi-
pelines are deemed as natural monopolies, we first examine whether
that reputation is supported by the properties of the long-run cost
function. We then examine the short-run cost function to assess the
performance of short-run marginal cost pricing. Lastly, we assess the
performance of rate-of-return regulation for that industry.

3.1. Long-run cost

We let e denote the market price of the energy input and r the
market price of capital faced by the firm. From the cost-minimizing
combination of inputs needed to transport the output Q, one can derive
the long-run total cost function (Cf., Appendix A):
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Three insights can be drawn from that specification. Firstly, the
elasticity of the long-run cost with respect to output is =β 9/11 and
lower than one. The cost function (5) also validates the empirical re-
marks in Chenery (1952) and Massol (2011) who suggested that this
elasticity is almost constant over most of the output range. Secondly,
the ratio of the long-run marginal cost to the long-run average cost is
constant and also equals β. As <β 1, setting the price equal to the long-
run marginal cost systematically yields a negative profit. Lastly, one can
note that the univariate cost function (5) is concave and thus strictly
subadditive (Sharkey, 1982 - Proposition 4.1). The cost subadditivity
property has important policy implications: it attests that a point-to-
point gas pipeline system verifies the technological condition for a
natural monopoly. As this particular industry structure may lead to a
variety of economic performance problems (such as excessive prices,

Table 1
Engineering equations.

Exact engineering equations Approximate engineering equations

Compressor equation: (a)
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Approximate compressor equation: (a)
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Weymouth flow equation: (b)
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Approximate flow equation: (b)
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Mechanical stability equation: (c)

=τ c D3

Mechanical stability equation: (c)

=τ c D3

Notes: (a) (b) the positive constant parameters c1, c2 and b (with <b 1) are de-
tailed in Yépez (2008) for the USCS unit system. Elevation changes along the
pipeline are neglected in the flow equation. (c) This equation follows the in-
dustry-standard practice and assumes that the pipe thickness equals a pre-
determined fraction c3 of the inside diameter (e.g., c3 =0.9% in Ruan et al.
(2009 – p. 3044)).
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