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a  b  s  t  r  a  c  t

Sensor  drift  remains  to  be the  most  challenging  problem  in  chemical  sensing.  To  address  this  problem  we
have collected  an  extensive  dataset  for six different  volatile  organic  compounds  over  a period  of  three
years  under  tightly  controlled  operating  conditions  using  an  array  of 16  metal-oxide  gas  sensors.  The
recordings  were  made  using  the  same sensor  array  and  a  robust  gas  delivery  system.  To  the  best  of  our
knowledge,  this  is  one  of the  most  comprehensive  datasets  available  for  the  design  and  development
of  drift compensation  methods,  which  is freely  reachable  on-line.  We  introduced  a  machine  learning
approach,  namely  an ensemble  of  classifiers,  to  solve  a gas  discrimination  problem  over  extended  periods
of time  with  high  accuracy  rates. Experiments  clearly  indicate  the presence  of  drift  in  the  sensors  during
the  period  of  three  years  and  that  it  degrades  the  performance  of  the  classifiers.  Our proposed  ensemble
method  based  on  support  vector  machines  uses  a  weighted  combination  of  classifiers  trained  at  different
points  of  time.  As  our  experimental  results  illustrate,  the  ensemble  of  classifiers  is able  to  cope  well  with
sensor  drift  and  performs  better  than  the  baseline  competing  methods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the history of sensors’ development, the electronic noses, or
simply e-noses, are a relatively new addition to the world of sensors,
and can be defined as a collection of broadly cross-reactive sensors
connected to electronics and an effective pattern recognition sys-
tem used to detect, classify, and, where necessary, quantify a variety
of chemical analytes or odors of concern in a certain area [1,2]. Ide-
ally, these systems would greatly benefit from chemical sensors
that would always show an identical response when exposed to
the same analyte or a chemical mixture and return to their baseline
level immediately after the gas being evaluated is no longer present
at the sensor surface. However, in real-life applications, where sen-
sors are operated over a long period of time, such an ideal situation
is still largely unrealizable today [3].  The gradual and unpredictable
variation of the chemo-sensory signal responses when exposed to
the same analyte under identical conditions, a.k.a. sensor drift, has
long been recognized as one of the most serious impairments faced
by chemical sensors [4–7].
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Drift has plagued the sensor research community for many
years, deteriorating the performance of classifiers used for gas
recognition and augmenting the maintenance costs of chemo-
sensory systems, or artificial electronic noses, during real-time
operations. In general, sensor drift can be attributed to two
predominant sources [8,9]. First, the ‘real-drift’ (a.k.a. first-order
drift) due to the chemical and physical interaction processes
of the chemical analytes, in gas phase, occurring at the sensing
film microstructure, such as aging (e.g. the reorganization of the
sensor surface over long periods of time) and poisoning (e.g.,
irreversible binding due to external contamination). And second,
the ‘second-order drift’ (or measurement system drift, among
many other names), produced by the external and uncontrollable
alterations of the experimental operating system, including, but
not limited to, changes in the environment (e.g., temperature and
humidity variations); measurement delivery system noise (e.g.,
tubes condensation, sample conditioning, etc.); and thermal and
memory effects (e.g., hysteresis or remnants of previous gases). In
general, a number of approaches under the notion of sensor drift
counteraction have been implemented in the literature, but one of
the pioneering works, and perhaps the most systematic sensor drift
analysis was  performed by Romain and co-workers [10,11],  who
utilized a very comprehensive dataset, collected over long periods
of time in real operating conditions, to provide a deep insight into
the sensor drift problem, for both the real and second-order drift.
Among the many interesting conclusions drawn from that work,
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the following three aspects were emphasized: (i) from all the
sensing technologies available, metal oxide based gas sensors [12]
remain the best option for long term applications for continuous
monitoring systems; (ii) a calibration gas is recommended to
estimate sensor drift compensation, and (iii), sensor replacement
is unavoidable over long periods of time.

In practical applications, it is difficult to empirically differentiate
between real drift and second-order drift, if possible at all. Accord-
ingly, it is hard to develop methods to correct different sources
of drift because the origin of it cannot be ascertained. Utilizing an
effective delivery system allows the chemical sensors to bypass the
second-order drift effect, making it possible to exclusively concen-
trate on the chemical sensors for compensating real drift. In our
particular gas delivery system, we can control the second-order
drift, too, so we can exclusively address the real drift problem. Thus,
in the remainder of this document we use the term drift to refer to
real drift. Concerning real drift reduction, many efforts have been
devoted to find the sensor materials that can reversibly interact
with the gas so that the detected molecules unbind the sensor mate-
rial as soon as the gas has been purged out from the sensor surface
[13–15].  Other solutions based on periodically changing the sen-
sor working temperature [16,17] have also been implemented in
an effort to minimize the effects of irreversibility in the sensors’
responses due to poisoning. Undoubtedly, heightened reversibility
in the sensor response is necessary for the effective drift counterac-
tion. However, this general treatment only constitutes one facet of
the problem—the so-called short-term drift—a substantial study of
the sensor variability over longer periods of time is also necessary.

The most commonly used solutions to cope with sensor drift
within the chemical sensing community are univariate and multi-
variate methods, where drift compensation is performed either on
each sensor individually or on the entire sensor array [9,18].  Among
the multivariate drift compensation methods, unsupervised com-
ponent correction techniques are the most popular [4,19,20]. These
techniques rely on finding linear transformations that normalize
the sensor responses across time so that a classifier can be directly
applied to the resulting stationary data. For instance, the compo-
nent correction method presented by Årtusson et al. [4] applies
the following transformation to the measurement/data matrix
X ← X − (X · c)c�, where c is the principal component vector(s) of the
measurements computed using a reference gas that may  approx-
imate the drift direction. The main drawback of these techniques
is that they assume the drift direction to be linear in the feature
space and, therefore, a linear transformation of the data suffices
to correct it. While it is entirely plausible that kernelized versions
of component analysis, such as kernel principal component anal-
ysis [21], can be applied to account for non-linearities in the drift
direction, these techniques have not been investigated much in the
chemical sensing community. Also, with the exception of Ref. [20],
these techniques require a reference gas that is used to approximate
the drift direction by assuming that the reference gas provides the
drift direction in all the other gases.

In this paper, we take a completely different approach to solve
the mentioned problem, in which we do not make any of the above-
mentioned assumptions. Instead, we use a supervised machine
learning method, namely, an ensemble of classifiers to cope with
sensor drift. To the best of our knowledge, such a machine learning
approach, that automatically detects and copes with sensor drift,
has not been applied in the chemical sensing community before,
although it has been shown to yield promising results on prob-
lems with drifting concepts in machine learning and data mining
[22–25]. Utilizing a comprehensive dataset of a multi-component
gas classification problem recorded from metal-oxide gas sen-
sors over a course of 36 months, we investigate the feasibility
of our ensemble of classifiers methodology to mitigate the drift
effect in chemical gas sensors. It is important to note that the

ensemble method used in this paper complements, rather than
competes against, the existent component correction methods
mentioned above; since component correction methods are essen-
tially a pre-processing technique, we can indeed use the ensemble
method on the pre-processed data, too. In the remainder of this
paper, we first describe the experimental setup, the dataset, and
the feature extraction methods considered in this work (Section
2). We  then describe the drift compensation algorithm (Section
3), followed by a detailed description of our experimental find-
ings (Section 4). And finally, we  present the concluding comments
drawn from the results presented in this paper (Section 5).

2. Data collection

We apply our drift compensation method to an extensive
dataset3 recorded by a metal-oxide gas sensor array. In this
section, we  describe the experimental setup, the recording pro-
tocol, and the signal processing algorithms used for feature
extraction.

2.1. The experimental setup

We  used a sixteen screen-printed commercially available
metal-oxide semiconductor gas sensors array, manufactured and
commercialized by Figaro Inc. [12], for our experiments. The
custom design used in the sensing technology includes an indepen-
dently controlled RuO2 (Ruthenium Oxide) electrical heating line
and a metal oxide semiconductor film as a sensor material printed
onto the measuring electrodes (noble metal). The obtained sensor
element is mounted onto an alumina substrate and then connected
by lead wires to the pins of the sensor package. The resulting array,
populated by sensor devices (4 of each) tagged by the manufacturer
as TGS2600, TGS2602, TGS2610, TGS2620 is placed into a 60 ml-
volume test chamber, where the odorants of interest, in gaseous
form, are to be injected for trials. To generate the required dataset,
we connect the said test chamber to a computer-controlled con-
tinuous flow system, which provides versatility for conveying the
chemical compounds of interest at the desired concentrations to
the sensing chamber with high accuracy and in a highly repro-
ducible way  while keeping the total flow constant. In particular,
our system utilizes three digital, computed-supervised mass flow
controllers (MFCs) (provided by Bronkhorst High-Tech B.V. [26]),
each of them with different maximum flow levels (200, 100, and
20 ml/min, ±1% of accuracy). Such devices connect to different pres-
surized gas cylinders, which contain, diluted in dry air, either the
carrier gas or the chemical analytes to be measured. To maintain
the moisture level constant at 10% R.H. (measured at 25 ± 1 ◦C) dur-
ing the entire measurement process, we utilize synthetic dry air
as background for all measurements, provided by Airgas Inc. [27].
Then, the analytes under analysis (i.e., ammonia, acetaldehyde, ace-
tone, ethylene, ethanol, and toluene) are added to this background
in random order. The total flow rate across the sensing chamber is
set to 200 ml/min and kept constant for the whole measurement
process. The response of the gas sensor array was measured when
the operating temperature of sensors was  fixed at 400 ◦C, which,
according to the deterministic one-to-one look-up table provided
by the manufacturer [12], is attained via a built-in heater that is
driven by an external DC voltage source set at 5 V. Finally, to ensure
that reproducible response patterns are acquired during each mea-
surement, the sensors were pre-heated for several days prior the
experiment process gets started.

3 The dataset will be made available on the UCI repository upon acceptance of the
paper.
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