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a b s t r a c t

Mixtures of benzene, toluene, ethylbenzene, p-xylene and naphthalene dissolved in water were probed
with an array of partially selective gold nanoparticle chemiresistor sensors. A full factorial experimental
design was followed to generate every possible combination (unary, binary, ternary, quaternary and
quinary). The nominal concentrations of the individual components in the mixtures were 0, 0.5, 1, 5
or 10 mg/L and the combined concentrations were between 0 and 45 mg/L, which are relevant to EPA
defined maximum contaminant levels in drinking water. Several different statistical techniques were
used to predict the component concentrations in the mixtures based on the sensor array responses.
The most accurate technique was a non-linear ensemble method called random forests. The overall root
mean square error between the predicted and measured concentrations (residuals) was 0.2–1.5 mg/L for
the mixtures with a nominal component concentration of 10 mg/L. The accuracy of the random forests
predictions was not unduly affected by increasing mixture complexity. Random forests analysis is a
statistical technique suitable for quantifying the relationship between responses of partially selective
sensors to the concentration of different hydrocarbons in water.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Sensor arrays are being more widely adopted in many appli-
cations: such as the quality control of food [1], the detection of
explosives or contraband [2], and even the diagnosis of medical
conditions [3]. These sensors have been made possible through
research that has improved the sensitivity, selectivity and robust-
ness of sensing materials [4,5]. The development of sensors has also
required improvements to the methods used to analyze the sensor
signals [6]. New statistical analysis techniques have been devel-
oped and applied to the output from sensor devices to improve the
interpolation of their measurements [7].

The complexity of the sensor output and the extent that it will
be interpreted will define the best statistical method to use. In
particular, sensors that are only partially selective require more
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advanced statistical methods to be correctly interpreted than per-
fectly selective sensors. The wrong analysis or a poor understanding
of data could easily lead to erroneous classification or predic-
tion [8]. The data analysis of sensor arrays has been thoroughly
reviewed [6,9–11], covering many different methods: principal
component analysis (PCA) [12,13], principal component regression
(PCR) [14,15], extended disjoint principal components regres-
sion (EDPCR) [16,17], discriminant analysis (DA) [18,19], nearest
shrunken centroid (NSC) [7], k-nearest neighbor (KNN) [20], par-
tial least squares (PLS) [21–23], non-negative least-squares (NNLS)
[17], multivariate curve resolution (MCR) [24], multiple linear
regression (MLR) [12,23], visual empirical region of influence (VERI)
[25], advanced neural networks (ANN) [26–29], back propagated
neural networks (BPNN) [30], relevance vector machines (RVM)
[31], and support vector machines (SVM) [32]. Each method has
its advantages and disadvantages that would make it suitable for
different sensor outputs or applications. Surprisingly, a relatively
new and elegant technique, random forests, has only had limited
application to sensor array data [7,30,33].

The nonlinear multiple regression version of random forests is
an ensemble method that uses bootstrap samples and random fea-
ture selection to build a large set of regression trees which are
averaged to produce predictions [34–36]. The model is built from
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classification trees, with each tree being constructed from ran-
domly selected subsets of the data (with replacement), commonly
referred to as “bootstrapping”. Each data sample is classified by
every tree, except for the trees that used that sample in their con-
struction. The output from the classification trees is then averaged
to give a prediction, in this case the sensor responses are used to
build a “forest” of classification trees and predicted concentrations
are output from the trees. The random forests algorithm can handle
a large number of different features (descriptors) including redun-
dant and irrelevant features and it does so without prior feature
selection and with little or no parameter tuning [37]. Because of
the Law of Large Numbers, the random forests algorithm is typ-
ically not prone to overfitting and becomes more accurate with
more trees [34]. When tested on a wide range of different dimen-
sional data sets, random forests outperformed ANN and SVM in
three criteria that assessed the accuracy of the different technique’s
predictions [38]. However in another study, where there were gaps
in the data, random forests underperformed in comparison to mul-
tilayered perceptron (MLP) and multivariate adaptive regression
spline (MARS) [39]. One study that has examined random forests
in relation to sensor array data found that it had a similar classifi-
cation performance to SVM [7], but random forests is more robust
showing little sensitivity to its two hyper parameters [32]. Further-
more, random forests outperformed BPNN and SVM at classifying
juices and vinegars that were sampled with an electronic tongue
[30]. Random forests analysis of partially selective colorimetric sen-
sor arrays was able to classify whether a patient has cancer with
73.3% sensitivity and 72.4% specificity [33]. This demonstrates that
random forests is excellent at classifying samples, but it can also
quantify samples. In this paper we use random forests to quantify
the concentration of hydrocarbons in water; a challenge necessary
to develop a sensor system suitable for environmental monitoring.

Measuring groundwater for volatile organic compounds (VOCs)
like benzene, toluene, ethylbenzene and xylene (commonly
referred to as BTEX) is of interest at sites where petrochemicals
have been stored. The speciation and quantification of BTEX in
groundwater can prove challenging because there are potentially
hundreds of other hydrocarbon compounds that can simulta-
neously dissolve into the water from a gasoline or diesel source
[40]. The standard method to measure VOCs is by off-site analysis
with a gas chromatograph–mass spectrometer (GC–MS) which has
excellent detection limits and can accurately quantify the compo-
nents [41]. Similarly, infrared-attenuated total reflectance (IR-ATR)
also shows excellent selectivity and sensitivity [42]. Although these
sophisticated instruments are becoming smaller and more portable
[43], it is not currently economically feasible to use GC–MS or
IR-ATR for constant and real time monitoring of wells. The gold
nanoparticle chemiresistor sensor arrays described herein offer a
more feasible alternative [44,45]. They have been used to directly
detect a variety of hydrocarbons in water [18], seawater [46], and
even biological media [47]. Gold nanoparticle films can be used as
chemiresistor sensors because their electrical resistivity responds
to chemical changes that occur in their immediate environment
[48]. Here we examine the performance of chemiresistor sensor
arrays to quantify the concentration of multicomponent, synthetic
hydrocarbon mixtures in water with the random forests analysis.
The concentrations tested are relevant to the EPA maximum con-
taminant levels in drinking water which are 1 mg/L for toluene,
0.7 mg/L for ethylbenzene and 10 mg/L for p-xylene [49].

2. Experimental

Benzene (B), toluene (T), ethylbenzene (E), p-xylene (X), and
naphthalene (N) 99% reagent grade were used as received from
Sigma Aldrich. The combinations of the five analytes that were

examined followed a two level, full factorial design. This exper-
imental design was chosen because of its simplicity and ability
to completely cover the experimental space of mixture combina-
tions. Every one of the 32 possible combinations of analytes was
prepared: one blank (O), 5 unary component mixtures (B, T, E, X
and N), 10 binary mixtures (BE, BN, BT, BX, EN, EX, TE, TN, TX and
XN), 10 ternary mixtures (BEN, BEX, BTE, BTN, BTX, BXN, EXN, TEN,
TEX and TXN), 5 quaternary mixtures (BEXN, BTEN, BTEX, BTXN
and TEXN) and one quinary mixture (BTEXN). In addition, a second
quinary mixture was prepared that contained all 5 components
but at half the nominal concentration of the BTEXN sample, this
mixture is referred to as “MID” in the following sections. The first
experiment tested mixtures with nominal concentrations of 0 or
10 mg/L of benzene, toluene, ethylbenzene, and p-xylene and a
nominal concentration of 0 or 5 mg/L naphthalene. For example,
the three component “BEN” mixture had a nominal concentration
of 10 mg/L benzene, 10 mg/L ethylbenzene, 5 mg/L naphthalene,
0 mg/L toluene and 0 mg/L p-xylene. In this experiment the “MID”
sample contained benzene, toluene, ethylbenzene and p-xylene
at a nominal concentration of 5 mg/L and naphthalene at a nom-
inal concentration of 2.5 mg/L. Mixtures were prepared in water
from 0.01 g/mL stock solutions of each hydrocarbon in methanol.
Possible effects from the presence of methanol were considered,
however there were no significant differences in the outcomes from
analyses of data that had been corrected for the contribution from
methanol in comparison to those that had not. The samples were
prepared in a randomized order and then loaded into the fluidic
system that delivered them to the array of sensors in eight expo-
sures.

A typical sensor consisted of a gold microelectrode (10 interdig-
itated fingers, 3000 �m long, 5 �m wide, with a 5 �m gap). On the
microelectrode an aqueous solution of gold nanoparticles that are
stabilized with 4-(dimethylamino)pyridine are printed and then
dried to leave a circular film [51]. The film of nanoparticles is func-
tionalized [44] by incubating the film in an acetonitrile solution
with 10 mM of the thiol for 1 h. During incubation the thiol displaces
the weakly bonded 4-(dimethylamino)pyridine from the surface
of the gold nanoparticles. For the first experiment the array of
sensors were functionalized with a variety of thiols: 1-hexanethiol
(HEXT), 6-mercapto-1-hexanol (MHOH), 1,8-octanedithiol
(OCDT), 2-phenylethanethiol (PET), 2-naphthalenethiol (NAP),
(3-mercaptopropyl)triethoxysilane + 1-hexanethiol (MPTES), and
trans-4,5-dihydroxy-1,2-dithiane (DOHDT). Each of these thiols
except OCDT were used to functionalize two duplicate sensors
giving an initial array of 13. The thiols stabilize the nanoparticle
and define the partitioning of any chemical into the film from the
surrounding environment [52]. Following the incubation, the gold
nanoparticle films were rinsed with acetonitrile and water and the
baseline resistance measured to confirm the 4-(dimethylamino)
pyridine had been displaced.

The second experiment tested all of the same combinations of
mixtures as the first experiment, however the nominal concen-
trations were either 0 or 1 mg/L for each of the five components,
including naphthalene, and the “MID” sample contained nominally
0.5 mg/L of each benzene, toluene, ethylbenzene, p-xylene, and
naphthalene. The mixtures were prepared in a randomized order
and delivered in six exposures to the sensor array with the same
fluidic system. The sensor array used in the second experiment
was functionalized with HEXT ×2, MHOH ×2, OCDT ×2, PET, NAP
×2, 1-octanethiol (OCT), triphenylmethanethiol (TPMT), cyclopen-
tanethiol + 1-hexanethiol (CPT + H), 4-methoxybenzyl mercap-
tan + 6-mercapto-1-hexanol (MOB + M), and 4-(tert-butyl)benzyl
mercaptan + 2-phenylethanethiol (TBBT + PET). Sensors marked
with ×2 were present in the array in duplicate otherwise only
one of that sensor was present. The MPTES, CPT + H, MOB + M,
and TBBT + PET sensors were functionalized with solutions that
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