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a b s t r a c t

A new temporal approach is presented for the recovery of the absolute phase maps from their wrapped
versions based on the use of fringe patterns of three different spatial frequencies. In contrast to the two-
frequency method recently published, the method proposed is characterized by better anti-error
capability as measured by phase error tolerance bound. A general rule for the selection of the three
frequencies is presented, and its relationship to the phase error tolerance bound is derived. Theoretical
analysis and experimental results are also presented to validate the effectiveness of the proposed three
frequency technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fringe projection profilometry (FPP) is one of the most promis-
ing technologies for non-contact 3D shape measurement. A challen-
ging task associated with existing phase measurement technique in
FPP is phase unwrapping operation, which aims to recover the
absolute phase maps from the wrapped phase maps. Existing phase
unwrapping methods include spatial [1], temporal [2,3], and period
coding [4]. However, recovery of absolute phase maps is still a
challenging task when the wrapped phase maps contain noise,
sharp changes or discontinuities [5].

To achieve reliable and accurate phase unwrapping for FPP, a
variety of temporal phase unwrapping approaches have been pro-
posed following work of Huntley and Saldner [2]. The general idea
behind this temporal method is that multiple fringe patterns are
projected onto the object, yielding a sequence of wrapped phase
maps as a function of time t. These phase maps can be considered as
a 3D phase map ϕðm;n; tÞ, denoting the wrapped phase value at
pixel ðm;nÞ at the tth phase map (t¼0, 1, 2, …, s). Phase unwrapping
can be carried out along any path in the 3D space in order to avoid
noise or boundaries and thus achieving correct recovery of the
absolute phase map. While the method proposed in [2] is demon-
strated to be effective for accurate phase unwrapping, it also suffers

from the drawback of requiring many intermediate phase patterns (e.
g., 7 sets of fringe patterns were employed in [2]), which is obviously
not suitable for fast or real-time measurement. In order to increase
the efficiency, Zhao et al. [3] propose to use two image patterns, one
of which has a very low spatial frequency in contrast to the other. In
particular, the low spatial frequency pattern only has a single fringe.
Such a pattern has its absolute phase value falling within the range
ð�π;πÞ, and hence can be used as a reference to calculate the fringe
number of the other fringe pattern, thus yielding its absolute phase
map. Li et al. [5,6] also employ the phase map of single fringe pattern
as reference to unwrap high spatial frequency fringe patterns, and it
is shown that the spatial frequency of the pattern to be unwrapped is
determined by the level of noise. Following the same method in [5],
Liu et al. [7] project a single fringe pattern and a high frequency
pattern in one shot to accelerate the speed of 3D measurement. This
method works well in principle, but the gap between two spatial
frequencies should be restricted within a range based on the noise
level or steps in the low frequency phase maps. As the accuracy
performance of FPP requires the use of high frequency fringe
patterns, these methods may not work well when the phase maps
are noisy or discontinuous. Consequently, multiple intermediate
image patterns are still required in order to reduce the frequency
gaps among adjacent patterns. Saldner and Huntley [8,9] study the
multiple intermediate image patterns, showing that to unwrap a
phase map of frequency f, log 2 f þ1 sets of fringe patterns are
required. A similar result is also reached by Zhang [10,11], indicating

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optlaseng

Optics and Lasers in Engineering

http://dx.doi.org/10.1016/j.optlaseng.2014.12.024
0143-8166/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: jiangtao@uow.edu.au (J. Xi).

Optics and Lasers in Engineering 70 (2015) 18–25

www.sciencedirect.com/science/journal/01438166
www.elsevier.com/locate/optlaseng
http://dx.doi.org/10.1016/j.optlaseng.2014.12.024
http://dx.doi.org/10.1016/j.optlaseng.2014.12.024
http://dx.doi.org/10.1016/j.optlaseng.2014.12.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2014.12.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2014.12.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2014.12.024&domain=pdf
mailto:jiangtao@uow.edu.au
http://dx.doi.org/10.1016/j.optlaseng.2014.12.024


that the spatial frequency can be increased by a factor of 2 between
two adjacent patterns. Taking a typical FPP arrangement as an exa-
mple where the image pattern has 16 fringes, 5 image patterns are
still required with this approach.

In order to recover the absolute phase maps of high spatial
frequency fringes with less number of fringe patterns, we have
developed a temporal phase unwrapping technique based on the
use of two fringe images with two selected frequencies [12]. When
the two normalized spatial frequencies f 1 and f 2 are coprime,
there exists a one-to-one map from ½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π to their
fringe orders, where ϕ1ðxÞ, ϕ2ðxÞ are the wrapped phase maps. We
also obtain the minimal value gap of ½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π when f 1
and f 2 are coprime. However, the performance of the proposed
method in [12] is limited by phase error tolerance bound, π=ðf 1þ f 2Þ
[13]. If the phase error of wrapped phase maps is larger than the
phase error bound, errors may occur in the recovery of the absolute
phase maps. As demonstrated by the experiments in [13], phase
errors in many practical situations are significant and can easily
exceed the bound, leading to the failure in recovering the absolute
phase map. Therefore, it is desirable to develop new approaches
with the aim to increase phase error tolerance bound. To this end,
we propose a method based on the projection of three fringe
patterns with selected frequencies. The idea is that with the use of
three spatial fringe patterns, the minimal value gap on the values of
½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π can be increased to higher than one, resulting
in a higher phase error tolerance bound.

Zhong et al. [14] also constructed a look-up table to unwrap the
absolute phase maps for multiple-spatial-frequency fringes. This
look-up table denotes the corresponding relationship from a pair
of fringe orders at two spatial frequencies (f 1, f 2) to ½f 2ϕ1ðxÞ�
f 1ϕ2ðxÞ�=2π. When the spatial frequencies f 1 and f 2 are large
values, one value in ½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π may correspond to two
or more pairs of fringe orders, thus the fringe orders cannot
be determined uniquely. To make sure the values of ½f 2ϕ1ðxÞ�
f 1ϕ2ðxÞ�=2π unique, Zhong, et al. [15] proposed to use relatively
irrational spatial frequencies for the wrapped phase maps, that is,
f 1 ¼ 3, f 2 ¼ 5, f 3 ¼ 3

ffiffiffi
2

p
=2 (not the normalized spatial frequencies).

To apply the relatively irrational frequencies, Zhong [16] proposed
to generate the two relatively irrational spatial frequencies fringes
by changing the projection angle of the grating. However, the
spatial frequency selection in [14] does not guarantee the one-to-
one map from ½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π to a pair of fringe orders, thus
the dynamic measurement range is smaller than the section of
pattern image [15]. Furthermore, the minimal value gap of
½f 2ϕ1ðxÞ� f 1ϕ2ðxÞ�=2π of two irrational frequencies is always smal-
ler than the two rational frequencies [14,15,16], which may yield
mistakes in determining fringe order pairs. Our proposed method
could guarantee the one-to-one map and increase the minimal
value gap of ½f jϕiðxÞ� f iϕjðxÞ�=2π significantly to enhance the
reliability of absolute phase maps.

This paper is organized as follows. In Section 2 we present the
technique to recover the absolute phase maps with three selected
frequency fringe patterns. In Section 3, we give the principle to
increase the smallest value gap by selecting frequencies. In Section 4,
experiments are presented to validate the effectiveness of three
frequency technique and the principle to increase the value gap.
Section 5 concludes the whole paper.

2. Absolute phase maps recovery with three frequency fringe
patterns

2.1. Three frequency technique

Let us consider a FPP system, with which three image patterns are
projected onto the object surface respectively. The image patterns are

characterized by fringe structure where the light intensity is constant
in y-axis and varies sinusoidally in x-axis. The normalized spatial
frequencies of the three patterns are f 1, f 2 and f 3, referring to the
total number of fringes on the respective patterns. Let us use ΦiðxÞ
(i¼1,2,3) and ϕiðxÞ (i¼1,2,3) to denote respectively the absolute
phase maps and the corresponding wrapped phase maps of the
fringe patterns. Taking the central vertical line of images as the
reference, the value of the wrapped phase map is limited by
�πrϕiðxÞrπ (i¼1,2,3), and the value of the absolute phase maps
should fall into the following:

� f 1πrΦ1ðxÞr f 1π; � f 2πrΦ2ðxÞr f 2π; � f 3πoΦ3ðxÞo f 3π
ð1Þ

Hence the absolute and wrapped phase maps are related by the
following:

ΦiðxÞ ¼ 2πmiðxÞþϕiðxÞ ð2Þ

Where miðxÞ(i¼1,2,3) are referred to as fringe numbers or indices.
They are integers and � f i=2

� �
omiðxÞo f i=2

� �
(i¼1,2,3). Obviously,

the absolute phases can be recovered if miðxÞ(i¼1,2,3) are deter-
mined. In order to achieve this, we employ the following relation-
ships [10]:

f 2Φ1ðxÞ ¼ f 1Φ2ðxÞ; f 3Φ1ðxÞ ¼ f 1Φ3ðxÞ ð3Þ
Combining Eqs. (2) and (3), we have:

f 2ϕ1ðxÞ� f 1ϕ2ðxÞ
2π

¼m2ðxÞf 1�m1ðxÞf 2;
f 3ϕ1ðxÞ� f 1ϕ3ðxÞ

2π
¼m3ðxÞf 1�m1ðxÞf 3

ð4Þ
Similar to the method employed in [12,13], an intermediate

variable Φ0ðxÞ is introduced, which increases monotonically from
�π to π with respect to x and defined as follows:

Φ0ðxÞ ¼
Φ1ðxÞ
f 1

¼Φ2ðxÞ
f 2

¼Φ3ðxÞ
f 3

ð5Þ

Considering Φ0ðxÞ ¼Φ1ðxÞ=f 1 and taking account of Eq. (1), miðxÞ
(i¼1,2,3) can be determined by the value of Φ0ðxÞ as follows:

m1ðxÞ ¼ ::

f 1=2
� � ½f 1�ðf 1 mod 2þ1Þ�π=f 1rΦ0ðxÞoπ

::: :::

1 π=f 1rΦ0ðxÞo3π=f 1
0 �π=f 1oΦ0ðxÞoπ=f 1
�1 �3π=f 1rΦ0ðxÞo�π=f 1
::: :::

� f 1=2
� � �πoΦ0ðxÞr�½f 1�ðf 1 mod 2þ1Þ�π=f 1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

m2ðxÞ ¼

f 2=2
� � ½f 2�ðf 2 mod 2þ1Þ�π=f 2rΦ0ðxÞoπ

::: :::

1 π=f 2rΦ0ðxÞo3π=f 2
0 �π=f 2oΦ0ðxÞoπ=f 2
�1 �3π=f 2oΦ0ðxÞr�π=f 2
::: :::

� f 2=2
� � �πoΦ0ðxÞr�½f 2�ðf 2 mod 2þ1Þ�π=f 2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

m3ðxÞ ¼

f 3=2
� � ½f 3�ðf 3 mod 2þ1Þ�π=f 3rΦ0ðxÞoπ

::: :::

1 π=f 3rΦ0ðxÞo3π=f 3
0 �π=f 3oΦ0ðxÞoπ=f 3
�1 �3π=f 3oΦ0ðxÞr�π=f 3
::: :::

� f 3=2
� � �πoΦ0ðxÞr�½f 3�ðf 3 mod 2þ1Þ�π=f 3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð8Þ
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