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a b s t r a c t

A Fuzzy ARTMAP classifier for pattern recognition in chemical sensor array was developed based on Fuzzy
Set Theory and Adaptive Resonance Theory. In contrast to most current classifiers with difficulty in detect-
ing new analytes, the Fuzzy ARTMAP system can identify untrained analytes with comparatively high
probability. And to detect presence of new analyte, the Fuzzy ARTMAP classifier does not need retraining
process that is necessary for most traditional neural network classifiers. In this study, principal compo-
nent analysis (PCA) was first implemented for feature extraction purpose, followed by pattern recognition
using Fuzzy ARTMAP classifiers. To construct the classifier with high recognition rate, parameter sensi-
tive analysis was applied to find critical factors and Pareto optimization was used to locate the optimum
parameter setting for the classifier. The test result shows that the proposed method can not only maintain
satisfactory correct classification rate for trained analytes, but also be able to detect untrained analytes
at a high recognition rate. Also the Pareto optimal values of the most important parameter have been
identified, which could help constructing Fuzzy ARTMAP classifiers with good classification performance
in future application.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There are different types of poisonous gases or vapors in the
environment, which have harmful effects on human health. One
class of examples is volatile organic compounds (VOC). Their detec-
tion and identification are extremely important. Many types of
chemical sensors have been reported for identification of VOCs. One
example is chemiresistive sensor array, which is usually employed
to acquire signals for different analytes such as VOCs and other toxic
gases [1–5]. A sensor array has different response profiles or pat-
terns to different VOCs. Its signals thus can be used to analyze and
classify vapors with statistical or nonparametric intelligent meth-
ods.

To classify different VOCs, training for the classification model
is usually necessary. For certain VOCs, all the relevant information,
e.g., sensor signal, along with its corresponding class, is needed for
obtaining classification models during the training stage. Especially
when new VOCs are added, retraining for original and new VOCs is
generally needed with current reported approaches. In addition,
although various classification methods have been applied to clas-
sify VOCs, most of them only focus on identifying trained VOCs.
There are few reports on the detection of untrained VOCs.
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Fuzzy ARTMAP [6] is a constructive neural network model devel-
oped upon Adaptive Resonance Theory (ART) and Fuzzy set theory
[6–10], which allows knowledge to be added during training if nec-
essary. It avoids discarding the previous knowledge or model and
spares repeating the whole training process. The Fuzzy ARTMAP
classifier’s continuous online learning capability greatly facilitates
the dynamic changing of the classifier’s knowledge base. The learn-
ing and forecasting mode of the Fuzzy ARTMAP system can function
alternatively. Thus, the Fuzzy ARTMAP classifier is competent for
working in a dynamic environment that is subjected to the presence
of new vapor. For example, the Fuzzy ARTMAP classifier can always
recognize new vapors, and learn to classify them by changing its
structure and parameters without retraining for the original trained
vapors. Because of Fuzzy ARTMAP system’s self-organizing scheme,
it does not need pre-determination of many parameters, e.g., some
structure parameters; that is not the case for most traditional ANNs.
For example, in multi-layer perceptrons (MLPs), the amount of its
hidden layer(s), and the number of nodes in hidden layer(s) must
be decided before training. Also, the training of the Fuzzy ARTMAP
classifier is very fast compared with Back Propagation (BP) neural
networks. In addition, a Fuzzy ARTMAP classification system based
on the knowledge of several known or trained vapors can detect
the presence of a new or untrained vapor. This function can alert to
the presence of a potential threat from a new vapor in a dynamic
environment.

To date, there are many studies and successful applications of
Fuzzy ARTMAP in the pattern classification field [11–15]. However,
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based on the authors’ best knowledge, there are no reports using
Fuzzy ARTMAP to identify the untrained analytes from sensor array
responses. Instead, most current classifiers applied in this area have
no capability to identify untrained new vapors. In addition, analysis
of the effect of some important parameter toward the classification
system was presented. Pareto optimization method was applied to
analyze variation of classification performance corresponding to
the change of vigilance parameter’s value. The Pareto optimization
analysis identified the general near optimal value of initial vigilance
parameter. That provides some hint for constructing parameter set
of Fuzzy ARTMAP classifier in similar application.

In this paper, the Fuzzy ARTMAP classifiers are applied to
analysis of the responses of a chemiresistor sensor array with
different nanostructured sensing materials [3–5] to a set of
VOCs, namely vapors generated from organic solvents, ben-
zene (Bz), hexane (Hx), p-xylene (Pxy), and toluene (Tl). The
sensing array materials consist of (1) NDT-linked nanoparti-
cles (NDT-Au2 nm), (2) PDT-linked nanoparticles (PDT-Au2 nm),
(3) MUA-linked nanoparticles (MUA-Au2 nm), (4) MHA-linked
nanoparticles (MHA-Au2 nm), (5) MPA-linked nanoparticles (MPA-
Au2 nm) [1–4]. NDT: 1,9-nonanedithiol (HS–(CH2)9–SH), PDT:
1,5-pentadithiol (HS–(CH2)5–SH), MUA: 11-mercaptoundecanoic
acid (HS–(CH2)10–CO2H), MHA: 16-Mercaptohexadecanoic acid
(HS–(CH2)15–CO2H), and MPA: 3-mercaptopropanoic acid
(HS–(CH2)2–CO2H), were used as received (Aldrich). From the
four vapors, three are alternatively selected as known vapors to
the classifier viz. the Fuzzy ARTMAP. This classifier will then be
trained to learn the above three selected vapors. The fourth vapor
is considered a new vapor to the classification model. Partial data
for the chosen known vapors are employed to build a PCA model,
and the main PC variables are then served as input to train the
Fuzzy ARTMAP classifier. The remaining data for the trained vapors
and complete set of data for untrained vapor together constitute
the testing data set. The new PC scores from testing data are then
calculated from the previously built PCA model. After transforma-
tion, the adjusted PCs are fed to Fuzzy ARTMAP classifier to test
the classification performance. Finally, the Pareto optimization
method is applied to analyze the relationship between parameter
setting and performance of Fuzzy ARTMAP system.

2. Experiment

Sensor-response measurements were performed using a cus-
tomized interdigitated microelectrode (IME) device, which has
300 pairs of platinum electrodes of 5 �m width and 5 �m spac-
ing on glass substrate (100-nm thick). The thickness of the
coating of molecularly linked nanoparticle thin film was below
or close to the finger thickness. Details about the prepara-
tion of molecularly linked nanoparticle thin film assembly were
described previously [2,4]. Briefly, the thin films were prepared
via “exchanging–crosslinking–precipitation” route. The reaction
involved an exchange of linker molecule (NDT, PDT, MUA, MHA,
MPA) with the gold-alkanethiolates, followed by crosslinking and
precipitation via either Au S bonding at both ends of NDT or PDT,
or hydrogen bonding at the carboxylic acid terminals of MUA, MHA
or MPA. The platinum-coated IME devices were immersed into the
solution of the mixed nanoparticles and thiols at room temperature,
and solvent evaporation was prevented during the film formation.
The thickness of the thin films grown on the surface of the sub-
strates was controlled by immersion time [2,4].

A computer-interfaced multi-channel multimeter (Keithley,
Model 2700) was used to measure the lateral resistance of the
nanostructured coating on IME. The resistance and frequency mea-
surements were performed simultaneously with computer control.
All experiments were performed at room temperature, 22 ± 1 ◦C.
N2 gas (99.99%, Progas) was used as reference gas and as diluent

to change vapor concentration by controlling mixing ratio. The gas
flow was controlled by a calibrated Aalborg mass-flow controller
(AFC-2600). The flow rates of the vapor stream were varied between
5 and 50 mL/min, with N2 added to a total of 100 mL/min. The vapor
generating system followed the standard protocol [6b]. The vapor
stream was produced by bubbling dry N2 gas through a bubbler of
the vapor solvent using the controller to manipulate vapor concen-
tration [2,4].

The measured resistance (R) values were expressed as relative
differential resistance change �R/Ri for the evaluation of the vapor
sorption responses. �R is the difference between the maximum
and minimum values in the resistance response and Ri is the initial
resistance of the film [2,4].

3. Classification methodology

The following schematic diagram (Fig. 1) depicts the general
classification procedure in this study. The original responses from
sensor arrays are preprocessed and the principal component anal-
ysis method is applied to extract feature vectors. Through PCA, the
dimension of signal is reduced, and the noise in original signals
could be eliminated to some extent. The feature vectors are then
projected into range [0,1] and serve as the input to Fuzzy ARTMAP
classifier, which can identify the both trained and untrained vapors.
Normalization and complimentary coding are important steps to
get appropriate input for Fuzzy ARTMAP system. The performance
of classifier is tested by classifying the new data from both trained
and untrained vapors.

The classification results are also been analyzed by multiple
objective optimization method. In this study, Pareto optimization is
implemented to identify optimal parameter set for Fuzzy ARTMAP
classifiers. For different parameter settings of Fuzzy ARTMAP clas-
sifiers, there is a trade-off between successful classification rate
for trained and untrained vapors. When there is a change in the
value of a decision variable or parameter in certain direction, one
objective, e.g., one correct classification rate, will increase, while
the other objective will show some deterioration. Since the two
objectives could not reach their global optima simultaneously, a
multi-objective optimization technique is employed to identify a
Pareto optimal set.

3.1. Principal component analysis

Principal component analysis is a multivariate analysis method
which transforms a set of correlated variables into a set of uncor-
related variables. Assuming there are p variables in original data X,
i.e. X = (x1,. . .,xp), PCA forms p linear combinations [16]:

PC1 = w11x1 + w12x2 + · · · + w1pxp

PC2 = w21x1 + w22x2 + · · · + w2pxp

...
PCp = wp1x1 + wp2x2 + · · · + wppxp

w2
i1 + w2

i2 + · · · + w2
ip = 1 i = 1, . . . , p

wi1wj1 + wi2wj2 + · · · + wipwjp = 0 for all i /= j (1)

where new variables PC1,PC2,. . ., PCp are p principal components
(PCs). The first principal component, PC1, accounts for the maxi-
mum variance in the original data; and PC2, the second principal
component, accounts for maximum variance that has not been
accounted for, by the first PC, etc. [16]. The weight of the jth original
variable for the ith PC is wij .

The PCA method can reserve most information in the origi-
nal data while at the same time eliminate a certain amount of
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