Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Shape- and phase-controlled synthesis of In_2O_3 with various morphologies and their gas-sensing properties

Xiaoqing Wang^a, Maofeng Zhang^a, Jinyun Liu^b, Tao Luo^b, Yitai Qian^{a,*}

ARTICLE INFO

Article history: Received 13 August 2008 Received in revised form 18 November 2008 Accepted 23 November 2008 Available online 3 December 2008

Keywords: Nanomaterials In₂O₃ Solvothermal Gas-sensing

ABSTRACT

Hexagonal In_2O_3 microspheres, cubic In_2O_3 porous nanoparticles, and cubic In_2O_3 porous nanorectangles were fabricated by calcining precursors at 450 °C, respectively. The precursors InOOH microspheres, $In(OH)_3$ nanoparticles, and $In(OH)_3$ nanorectangles were solvothermally synthesized by adjusting the volume ratios of ethylenediamine and distilled water in autoclave at 160 °C. Gas-sensing properties determination of ethanol, formaldehyde, and ammonia gases show that the cubic In_2O_3 porous nanoparticles have a higher response than the hexagonal In_2O_3 microspheres.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

 In_2O_3 is an important n-type semiconductor with a wide band gap (E_g = 3.6 eV) [1], and has potential application in optoelectronic devices, such as solar cell, UV lasers, and detectors [2]. In recent years, the gas-sensing properties of In_2O_3 materials on NH₃ [3], C_2H_5OH [4], HCHO [5], CO [6], O_3 [7], and H_2S [8] gases were investigated. It has been demonstrated that a decrease in the size of the In_2O_3 crystallites in the sensing layer can considerably enhance the response [9]. It is well known that nanomaterials with larger surface area have more chances to adsorb and desorb target gases molecules, which lead to a higher response [10]. By preparing porous structures is one of important methods to increase surface area of nanomaterials and then to improve their gas-sensing properties.

 In_2O_3 has two phases: cubic In_2O_3 (c- In_2O_3) and hexagonal In_2O_3 (h- In_2O_3). For various morphologies of c- In_2O_3 nanomaterials, several approaches, such as physical evaporation technique [11], chemical vapor deposition [12], thermal oxidation [13], laser ablation technique [14], sol–gel method [15], and solution-phase growth [16], have been reported. Recently, a route by calcining precursors to synthesize c- In_2O_3 nanomaterials attracts more and

In this study, precursors with different phases and morphologies were obtained by adjusting the volume ratios of ethylenediamine and distilled water via a solvothermal route. Then by calcining the precursors at $450\,^{\circ}\text{C}$, $h\text{-}\text{In}_2\text{O}_3$ microspheres, $c\text{-}\text{In}_2\text{O}_3$ porous nanoparticles, and $c\text{-}\text{In}_2\text{O}_3$ porous nanorectangles were fabricated, these morphologies were all rarely reported. The gas-sensing properties determination of ethanol, formaldehyde, and ammonia gases showed that the $c\text{-}\text{In}_2\text{O}_3$ porous nanoparticles had a higher response than the $h\text{-}\text{In}_2\text{O}_3$ microspheres. And all of the sensors made by In_2O_3 micro/nanoparticles were more responsive to $\text{C}_2\text{H}_5\text{OH}$ gas.

2. Experimental

All the reagents were analytically pure, purchased from Shanghai Chemical Company, and were used without further purification. Distilled water was used in our experiments.

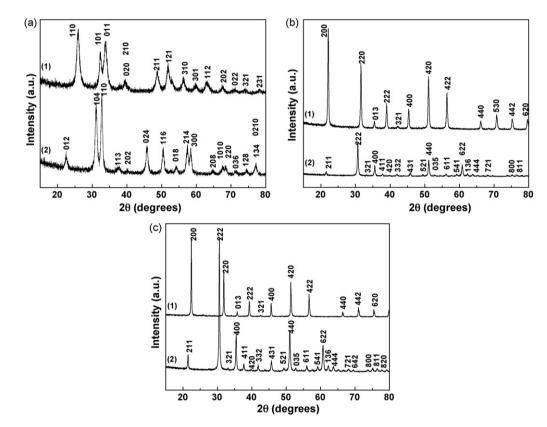
^a Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science & Technology of China, Jinzhai Road 96#, Hefei, Anhui 230026, PR China

b Key Laboratory of Biomimetic Sensing and Advanced Robot Technology, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China

more attention. Several synthetic routes, such as solution reaction [17], hydrothermal [1], and solvothermal methods [18], were used to prepare precursor $In(OH)_3$ materials. And $c-In_2O_3$ lotus-root-like nanostructures [17], nanorod bundles and spheres [1], and hollow microspheres [18] could be obtained by calcining their precursor. Similarly, these methods to fabricate precursor $In(OH)_3$ can also be applied to synthesize precursor InOOH materials. And by thermally treating them, $h-In_2O_3$ nanofibers [19], nanotubes [20], nanocubes [21], and multipods [22] can be obtained.

^{*} Corresponding author. Tel.: +86 551 360 1589; fax: +86 551 360 7402. E-mail address: ytqian@ustc.edu.cn (Y. Qian).

 Table 1


 The influence of different reaction conditions on the phases and morphologies of the products.

Sample	Method, V _{EN} :V _{DW} /temperature (°C)	Phase	Morphology, average size (nm)
S1	Solvothermal, 35:5	Orthorhombic InOOH	Microspheres, 500
S2	Solvothermal, 25:15	Cubic In(OH) ₃	Nanoparticles, 50
S3	Solvothermal, 0:40	Cubic In(OH) ₃	Nanorectangles, 110 in width and 200 in length
S4	Calcination (S1), 450	Hexagonal In ₂ O ₃	Microspheres, 500
S5	Calcination (S2), 450	Cubic In ₂ O ₃	Porous nanoparticles, 50
S6	Calcination (S3), 450	Cubic In ₂ O ₃	Porous nanorectangles, 110 in width and 200 in length

2.1. Synthesis of precursors

The precursors InOOH and $In(OH)_3$ were prepared via a simple solvothermal method. In a typical procedure, 0.5 mmol of $InCl_3 \cdot 4H_2O$ and 4 mmol of hexamethylenetetramine (HMTA) were added to a mixed solution of ethylenediamine (EN) and distilled water (DW) with different volume ratios to form a homogeneous

solution by constantly stirring for 30 min. The resulting mixture was transferred into a Teflon-lined stainless-steel autoclave (60 mL capacity) that was then sealed and maintained at $160\,^{\circ}\text{C}$ for $12\,\text{h}$; then cooled to room temperature naturally. The final products were washed with distilled water and anhydrous ethanol several times. Finally, the products were dried in a vacuum chamber at $50\,^{\circ}\text{C}$ for $6\,\text{h}$. The detailed volume ratios of solvents are shown in Table 1.

 $\textbf{Fig. 1.} \quad XRD \ patterns \ of the \ as-prepared \ samples \\ (a_1) \ InOOH \ microspheres, \\ (a_2) \ h-In_2O_3 \ microspheres, \\ (b_1 \ and \ c_1) \ In(OH)_3 \ nanoparticles, \ and \\ (b_2 \ and \ c_2) \ c-In_2O_3 \ nanoparticles.$

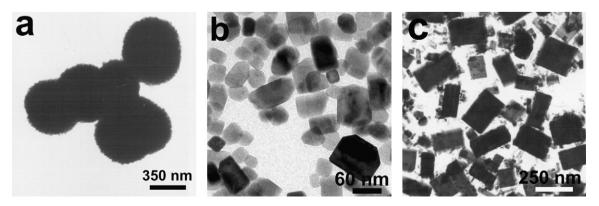


Fig. 2. TEM images of the as-obtained samples via solvothermal process with different volume ratios of EN/DW: (a) 35:5, (b) 25:15, and (c) 0:40.

Download English Version:

https://daneshyari.com/en/article/743391

Download Persian Version:

https://daneshyari.com/article/743391

<u>Daneshyari.com</u>